
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013
635

PAPER

Secure Regenerating Codes Based on Rashmi-Shah-Kumar MBR
Codes∗

Masazumi KURIHARA†a) and Hidenori KUWAKADO††b), Members

SUMMARY In this paper, we present a construction of (n, k, d,m) se-
cure regenerating codes for distributed storage systems against eavesdrop-
pers that can observe either data stored in at most m storage nodes or
downloaded data for repairing at most m failed nodes in a network where
m < k ≤ d ≤ n − 1. The (n, k, d,m) secure regenerating code is based on
an (n, k, d) minimum bandwidth regenerating (MBR) code, which was pro-
posed by Rashmi, Shah and Kumar as optimal exact-regenerating codes,
for all values of the parameters (n, k, d). The (n, k, d,m) secure regenerat-
ing codes have the security as a secret sharing scheme such that even if an
eavesdropper knows either data stored in at most m storage nodes or down-
loaded data for repairing at most m failed nodes, no information about data
leaks to the eavesdropper.
key words: secret sharing, secure regenerating code, distributed storage

1. Introduction

Distributed storage systems provide reliable access to data
by storing the data redundantly in a collection of individu-
ally unreliable storage nodes in a network such that the data
can be reconstructed from active nodes even if a small set
of nodes fails. For instance, such a reliable distributed stor-
age system can be constructed by using maximum distance
separable (MDS) codes such as Reed-Solomon (RS) codes.
This is optimal in the tradeoff between redundancy and re-
liability. With an (n, k) RS code, a data file is encoded to n
shares in such a way that the data file can be reconstructed
from any k shares, and the n shares are stored across n stor-
age nodes in the network. On the other hand, it is desirable
to regenerate (i.e., repair) a failed node in order to maintain
such a reliable distributed storage system.

Dimakis et al. [1] proposed the concept of a regener-
ating code that has not only the property of reconstructing
the data file but also that of repairing a failed node (i.e., re-
generating the data as was stored in the failed node). Un-
der the concept of regenerating codes, a data-collector is
permitted to connect to any k active nodes to reconstruct
the data file, and a failed node is permitted to connect to
any d active nodes to repair itself. The authors showed

Manuscript received May 15, 2012.
Manuscript revised October 19, 2012.
†The author is with the Graduate School of Informatics and

Engineering, The University of Electro-Communications, Chofu-
shi, 182-8585 Japan.
††The author is with the Graduate School of Engineering, Kobe

University, Kobe-shi, 657-8501 Japan.
∗The extended abstract of this paper was presented in

ISITA2012[11].
a) E-mail: kurihara@uec.ac.jp
b) E-mail: kuwakado@kobe-u.ac.jp

DOI: 10.1587/transfun.E96.A.635

that regenerating codes reduce the repair-bandwidth when
d ≥ k. Further, they showed that there exists a fundamental
tradeoff between the storage capacity of each node and the
repair-bandwidth. In Sect. 2, the definition of regenerating
codes will be described in detail. In the research results for
regenerating codes by many researchers, Rashmi et al. [3]
presented the general construction of exact-regenerating
codes such as (a) minimum-bandwidth-regenerating (MBR)
codes for all values of (n, k, d) and (b) minimum-storage-
regenerating (MSR) codes for all values of (n, k, d ≥ 2k−1).

Regenerating codes may be similar to secret sharing
schemes. The secret sharing scheme produces shares in such
a way that a share does not give any information about the
data. However, in general, the secret sharing scheme does
not have the property of regenerating the share as was stored
in a failed node. On the other hand, in the concept of a re-
generating code proposed by Dimakis et al. [1], the regener-
ating code does not have the property of the security.

Combining a regenerating code with a secret sharing
scheme has been proposed in [2], [4]–[7], [9]. Pawar et
al. [2] proposed the secrecy capacity for secure distributed
storage systems against passive eavesdroppers and secure
regenerating codes based on MBR codes, where the codes
are confined to the case n = d + 1. In [4], [5], [7], [9], secure
regenerating codes based on MSR codes were proposed. In
this paper, we propose a construction of (n, k, d,m) secure
regenerating codes based on (n, k, d) MBR codes for any val-
ues of (n, k, d). The proposed code is an extended version of
secure regenerating codes given in [6]. Previous secure re-
generating codes [6] are confined to the case n = d + 1. We
show that by using the proposed secure regenerating codes
an eavesdropper can not obtain information about the data
not only from shares stored in storage nodes but also from
downloaded data for repair. The proposed secure regenerat-
ing code includes all values of parameters of secure regen-
erating codes given in [2, Sect. V] and [6].

Shah et al. [9] have recently presented the secure regen-
erating code based on an MBR code [3]. In a construction
of a secure regenerating code, their code and our code are
based on the same MBR code. However, their code is dif-
ferent from our code. The difference between their code and
our code will be described in Sect. 4 in detail.

This paper is organized as follows: In Sect. 2, we de-
scribe the storage system and the regenerating codes. And
then, we define the secrecy capacity for the system and show
its upper bound. In Sect. 3, we describe (n, k, d) MBR codes
proposed by Rashmi et al. [3]. In Sect. 4, we propose a con-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

636
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

struction of (n, k, d,m) secure regenerating code based on
the (n, k, d) MBR code. In Sect. 5, we evaluate the secu-
rity of the proposed (n, k, d,m) secure regenerating code and
present our results as main theorems. In the result, we show
that the proposed secure regenerating codes have the secu-
rity of a ramp secret sharing scheme, and achieve the upper
bound of the secrecy capacity. In Sect. 6, we prove the main
theorem. Finally, a conclusion is given in Sect. 7.

2. Regenerating Codes and Secrecy

In this section we describe regenerating codes associated
with parameters (n, k, d, α, β, B) and secret capacity for se-
cure regenerating codes.

Assume that there are n storage nodes such as node 1,
node 2, . . . , node n, in a network.

2.1 (n, k, d, α, β, B) Regenerating Codes

In a distributed storage system, a data file (a message) is en-
coded to n shares so that the data file is reconstructed from
any subset of k shares, and n shares are stored across n stor-
age nodes in the network. Let B be the size of the data file
and let α be that of a share per node where the data size is
measured in terms of symbols over a finite field Fq with q
elements. The share size α is equal to the storage capac-
ity of a node. In this system, an end-user, which is called a
data-collector, is permitted to connect to any k active stor-
age nodes and download a share from each node to recon-
struct the data file. This process is termed as the reconstruc-
tion property.

When a storage node fails, the failed node loses the
share of itself. Under the concept of regenerating codes [1],
the failed node is permitted to connect to any d active nodes,
where d ≥ k, and download data for repair purposes from
each node in order to regenerate a share. In this paper, we
consider exact-regeneration described in detail in [3, Sect. I-
D] as a regeneration. The exact-regeneration means that the
fail node regenerates exactly the same share as was stored
in itself prior to failure. The d active nodes aiding in the
repair are termed as helper-nodes. The downloaded data
from each helper-node is called a piece for the failed node,
and let β be the size of a piece. A vector consisting of d
pieces downloaded from d helper-nodes is called a piece-
vector for the failed node, and the size dβ of a piece-vector
is called a repair-bandwidth. As a result, the failed node
can regenerate the same share of itself from the piece-vector.
This process is termed as the regeneration property.

From the above description about regenerating codes,
a regenerating code is characterized by the parameters
(n, k, d, α, β, B) where k ≤ d ≤ n − 1, and such a code is
written as an (n, k, d, α, β, B) regenerating code. It is desir-
able to minimize both of α and β for fixed k and d. It is not,
however, possible to minimize both of α and β simultane-
ously since there is a tradeoff between choices of the param-
eters α and β [1]. The regenerating code with parameters
(α, β) obtained by first minimizing α and then minimizing β

is called a minimum storage regenerating (MSR) code. The
parameters of an MSR code satisfy the following equations:

α =
B
k

and β =
α

(d − k + 1)
. (1)

Reversing the order, the regenerating code with parameters
(α, β) obtained by first minimizing β and then minimizing α
is called a minimum bandwidth regenerating (MBR) code.
The parameters of an MBR code satisfy the following equa-
tions:

β =
2B

k(2d − k + 1)
and α = dβ (2)

For fixed d, an MBR code minimizes the repair-bandwidth
dβ to repair a failed node.

2.2 Secrecy

Let S be a random variable with the uniform distribution
over FLS

q , representing a secret S ∈ FLS
q where LS ≤ B. Let

H(S) denote the entropy of the random variable S . The base
of the logarithm of the entropy is q, and then the entropy
H(S) of S is equal to LS . A secret S is encoded to n shares
c1, . . . , cn ∈ Fαq so that the secret S can be reconstructed from
any subset of k shares ci1

, . . . , cik
. For each i ∈ {1, . . . , n},

a share ci is stored in node i in the network. Let Ci be a
random variable representing a share ci. The reconstruction
property then can be written as follows: for k random vari-
ables Ci1 · · ·Cik representing any k shares ci1

, . . . , cik
,

H(S |Ci1 , . . . ,Cik) = 0. (3)

Assume that node f fails where f ∈ {1, . . . , n}. The
failed node f connects any d helper-nodes h1, . . . , hd of the
remaining n−1 nodes in the network to regenerate the share
c f of itself. Each helper-node hp, p ∈ {1, . . . , d}, computes

a piece d f ,hp
∈ Fβq for the failed node from the share chp

of
itself, and send it to the failed node. As a result, the failed
node obtains a piece-vector d f = [dt

f ,h1
, . . . , dt

f ,hd
]t ∈ Fdβ

q ,
which consists of d pieces, and can compute the same share
c f from it. Let Df ,hp and Df be random variables represent-
ing a piece d f ,hp

and a piece-vector d f , respectively. The
regeneration property can be written as

H(C f |Df) = 0. (4)

Thus, we have H(S |C f) ≥ H(S |Df) from Eq. (4) because C f

which is dependent on S is uniquely determined from Df ,
that is, the Markov chain S → Df → C f holds. Note that it
is not always true that H(Df |C f) = 0.

We consider two secrecy conditions for shares and
piece-vectors, respectively. Assume that there are at least
max{l,m} repaired nodes in the network where l and m are
nonnegative integers that are strictly less than k. First, the
secrecy condition for m random variables Ci1 , . . . ,Cim repre-
senting any m shares ci1

, . . . , cim
is defined as

H(S |Ci1 , . . . ,Cim) = H(S), ∀i1, . . . , im ∈ {1, . . . , n}. (5)

KURIHARA and KUWAKADO: SECURE REGENERATING CODES BASED ON RSK-MBR CODES
637

The parameter m will be used in a construction of an
(n, k, d,m) secure regenerating code in Sect. 4. Next, the
secrecy condition for l random variables Di1 , . . . ,Dil repre-
senting any l piece-vectors di1

, . . . , dil
is defined as

H(S |Di1 , . . . ,Dil) = H(S), ∀i1, . . . , il ∈ {1, . . . , n}. (6)

We notice that if l ≥ m, then from the regenerating property
by Eq. (4),

H(S) ≥ H(S |Ci1 , . . . ,Cil) (7)

≥ H(S |Di1 , . . . ,Dil) = H(S). (8)

Thus we have

H(S |Ci1 , . . . ,Cil) = H(S) (9)

if H(S |Di1 , . . . ,Dil) = H(S) and l ≥ m. In this paper,
from the above definitions of the two secrecy conditions,
we assume that an eavesdropper can observe either at most
l piece-vectors or at most m shares in the network.

We propose the following definition, which refines that
of the secrecy capacity given by Pawar et al. [2, Sect. V-
A], of the secrecy capacity. Given a repairable and se-
cure distributed storage system with a collection of the
parameters (n, k, d, α, β) concerned with the reconstruction
and the regeneration and the parameters (l,m) concerned
with the secrecy, its secrecy capacity, denoted by CS =

CS (n, k, d, α, β; l,m), is defined to be the maximum amount
of data that can be stored in this system such that the recon-
struction property and the two secrecy conditions are simul-
taneously satisfied for all possible data-collectors and eaves-
droppers, that is,

CS = CS (n, k, d, α, β; l,m)

:= sup H(S). (10)

H(S |Ci1 , . . . ,Cik) = 0, ∀i1, . . . , ik ∈ {1, . . . , n}
H(S |D f1 , . . . ,D fl) = H(S), ∀ f1, . . . , fl ∈ {1, . . . , n}
H(S |C j1 , . . . ,C jm) = H(S), ∀ j1, . . . , jm ∈ {1, . . . , n}

The above definition of the secrecy capacity is similar to that
of the secrecy capacity given by Pawar et al. [2, Sect. V-A,
Eq. (6)]. The secrecy capacity of Eq. (10) must satisfy the
two secrecy conditions for piece-vectors and shares. On the
other hand, the secrecy capacity given by Pawar et al. satis-
fies the only secrecy condition for piece-vectors. In the def-
inition of the secrecy capacity by Eq. (10), when l ≥ m, the
definition of the secrecy capacity is identical to that given
by Pawar et al. from the result of Eq. (9).

Under the passive eavesdropper model given by Pawar
et al. [2, Sect. V], an eavesdropper can observe only at most l
piece-vectors in the network. On the other hand, we assume
that an eavesdropper can observe either at most l piece-
vectors or at most m shares in the network. That is, the
secrecy capacity given by Pawar et al. is subject only to the
two conditions of Eqs. (3) and (6). On the other hand, the se-
crecy capacity of Eq. (10) is subject to the three conditions
of Eqs. (3), (5) and (6).

Theorem 1 (Upper Bound): For a repairable and secure
distributed storage system with a collection of parame-
ters (n, k, d, α, β) and (l,m), the secrecy capacity is upper
bounded as

CS (n, k, d, α, β; l,m) ≤
k∑

j=max{l,m}+1

min{(d − j + 1)β, α}. (11)

Proof: See Appendix A. �

For an MBR code, the repair-bandwidth dβ is equal
to the storage size α, that is, dβ = α. Thus, if a func-
tion which determines C f from Df for repair is a bijec-
tion, then the piece-vector Df is also determined from the
share C f , that is, H(Df |C f) = 0. Therefore, it is true
that H(S |Ci1 , . . . ,Cim) = H(S) implies H(S |Di1 , . . . ,Dim) =
H(S), and the converse is also true because of the regenera-
tion property. Hence, for an MBR code, we can assume that
l = m without loss of generality for the parameters m and l
in Eqs. (5) and (6), respectively. Because the case of l = m
is included in the case of l ≥ m, for an MBR code, the se-
crecy capacity of Eq. (10) is identical to that given by Pawar
et al. [2, Eq. (6)]. Moreover, the upper bound of Eq. (11) is
also identical to that given by Pawar et al. [2, Eq. (7)].

For the MBR code [3] used in this paper as an underly-
ing code, the function which uniquely determines C f from
Df for repair is bijective. In this paper, hence, we can as-
sume that l = m without loss of generality for the parame-
ters m and l in Eqs. (5) and (6), respectively. When l = m,
the upper bound of Eq. (11) is simplified to

CS (n, k, d, α, β; m,m) ≤
k∑

j=m+1

(d − j + 1)β, (12)

because of dβ = α.

Remark 2: For an MSR code, in general, the repair-
bandwidth dβ is greater than the storage size α when k ≥ 2,
that is, dβ > α. In such a situation, the secrecy capacity
of Eq. (10) is useful to estimate the secrecy ability of secure
MSR codes. The pair of the secrecy capacity of Eq. (10)
and its upper bound of Eq. (11) are useful to estimate the
secrecy ability of secure MSR codes [10]. However, secure
MSR codes are outside of this paper, that is, this paper only
discusses secure MBR codes.

3. Rashmi-Shah-Kumar (n, k, d) MBR Codes

Rashmi, Shah and Kumar [3] proposed the first construc-
tions of general and optimal exact-regenerating codes such
as (a) (n, k, d) MBR codes for all values of (n, k, d), and
(b) (n, k, d) MSR codes for all values of (n, k, d) where
d ≥ 2k − 2. In general, from the definition of regenerating
codes in Sect. 2.1, all n, k, d satisfy k ≤ d ≤ n − 1.

In this section, an (n, k, d) MBR code over Fq is intro-
duced because an (n, k, d,m) secure regenerating code based
on the (n, k, d) MBR code will be proposed in the next sec-
tion.

638
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

3.1 Message Matrix M

The parameters (n, k, d, B, α, β) of an (n, k, d)MBR code
over Fq satisfy the following relations [3, Sect. IV]:

α = d, β = 1, B =
1
2

k(2d − k + 1), (13)

moreover, we assume that n < q and the data file is com-
posed of B message symbols in Fq. Note that the parameters
α and B are uniquely determined from the parameters d and
k, and the parameter β is a fixed value as β = 1.

Let M1 be a k× k symmetric matrix constructed so that
the k(k+1)/2 components in the upper-triangular half of the
matrix are filled up by k(k + 1)/2 distinct message symbols
drawn from the set of the B message symbols of the data file.
The remaining k(d−k) message symbols are used to fill up a
second k×(d−k) matrix M2. Let O denote the (d−k)×(d−k)
zero matrix with all zero components. A message matrix M
is then defined as the d × d symmetric matrix given by

M =

[
M1 M2

Mt
2 O

]
(14)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1 · · · u1,k u1,k+1 · · · u1,d
...
. . .

...
...
. . .

...
uk,1 · · · uk,k uk,k+1 · · · uk,d

uk+1,1 · · · uk+1,k 0 · · · 0
...
. . .

...
...
. . .

...
ud,1 · · · ud,k 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

where Mt
2 is the transpose of the matrix M2. From the def-

inition of the message matrix M with components ui, j, note
that ui, j = uj,i for all i, j ∈ {1, . . . , d}, and ui, j = 0 for all
i, j ∈ {k + 1, . . . , d}.

3.2 Encoding, Share and Reconstruction

For each i ∈ {1, . . . , n}, assign a unique and public symbol
xi in Fq to node i in such a way that the following two con-
ditions are satisfied.

Condition for xi:

1. For any i ∈ {1, . . . , n}, xi � 0.
2. For any i, j ∈ {1, . . . , n}, xi � x j if i � j.

For the message matrix M, the share ci stored in node i is
then defined as

ci =
[
ci,1, ci,2, . . . , ci,d

]t := Mφ
i
∈ Fd

q (16)

where φ
i
=

[
1, xi, x2

i , . . . , x
d−1
i

]t ∈ Fd
q is a coding vector as-

sociated with node i and all operations are done over Fq. For
each i ∈ {1, . . . , n}, the coding vector φ

i
associated with node

i is also assigned uniquely and publicly. Note that the size of
a share is d from Eq. (13) and Eq. (16). Thus, the message
matrix M with B distinct message symbols is encoded to n
shares c1, . . . , cn.

Note that all the B message symbols can be recon-
structed from any k shares by using the reconstruction
method proposed by Rashmi et al. [3, Theorem 3].

3.3 Regeneration, Piece and Piece-Vector

In this section, we describe the regeneration method pro-
posed by Rashmi et al. [3, Theorem 2]. Suppose that a node
f fails and helper-nodes h1, . . . , hd are active. For each in-
dex p ∈ {1, . . . , d}, the helper-node hp computes a piece d f ,hp

for the failed node from the share chp
of itself and the coding

vector φ
f

of the failed node as follows:

d f ,hp
:= ct

hp
φ

f
∈ Fq, p = 1, . . . , d, (17)

and sends it to the failed node. Note that d f ,hp
= dt

f ,hp
since

a piece d f ,hp
is a scalar in Fq. As a result, the failed node

obtains the piece-vector d f consisting of d pieces as follows:

d f :=
[
d f ,h1
, d f ,h2

, . . . , d f ,hd

]t ∈ Fd
q. (18)

Note that the sizes of a piece and a piece-vector are one
and d, respectively, from Eqs. (13), (17) and (18). Using the
piece-vector d f and the d coding vectors φ

h1
, . . . , φ

hd
asso-

ciated with the helper-nodes h1, . . . , hd, the failed node can
compute the share c f as follows:

c f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φt

h1

...
φt

hd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

d f . (19)

Note that the d×d matrix
[
φ

h1
, . . . , φ

hd

]t is nonsingular since

the determinant of the matrix is the Vandermonde determi-
nant from the conditions for xi. On the other hand, from the
relation between c f and d f in Eq. (19), d f is also uniquely

determined from c f by using the matrix
[
φ

h1
, . . . , φ

hd

]t, that

is, H(Df |C f) = 0. Thus, we have H(S |C f) ≤ H(S |Df), and
then the following lemma holds.

Lemma 3: For random variables Df and C f representing
a piece-vector d f and a share c f for a failed node f respec-
tively, H(S |Df) = H(S |C f).
Proof : It holds that H(S |C f) ≥ H(S |Df) from the regen-
eration property, i.e., H(C f |Df) = 0. On the other hand,
since d f is also uniquely determined from c f by Eq. (19),
i.e., H(Df |C f) = 0, it holds that H(S |C f) ≤ H(S |Df). This
completes the proof of the lemma. �

From Lemma 3, we have the following corollary.

Corollary 4: For any m such that m ≤ n and any
i1, . . . , im ∈ {1, . . . , n}, H(S |Ci1 , . . . ,Cim) = H(S |Di1 , . . . ,
Dim).
Proof : From the relation between a piece-vector and a
share in Eq. (19), for i1, . . . , im ∈ {1, . . . , n}, it holds that
H(Di1 , . . . ,Dim |Ci1 , . . . ,Cim) = 0 and H(Ci1 ,. . . ,Cim |Di1 ,. . . ,

KURIHARA and KUWAKADO: SECURE REGENERATING CODES BASED ON RSK-MBR CODES
639

Dim)= 0. Therefore, this completes the proof of the corol-
lary. �

Finally, we show the following lemma about a relation
between shares and coding vectors.

Lemma 5: For any i, j ∈ {1, . . . , n}, ct
iφ j
= ct

jφi
, where ci

and c j are the shares of nodes i and j, respectively. Similarly,
φ

i
and φ

j
are the coding vectors associated with nodes i and

j, respectively.
Proof : Since the size of a piece ct

iφ j
is one symbol in Fq, that

is, ct
iφ j

is a scalar, (ct
iφ j

)t = ct
iφ j

. Moreover, since (ct
iφ j

)t =

ct
iφ j

and M = Mt, we have ct
iφ j
= (ct

iφ j
)t = φt

j
ci = φ

t
j
Mφ

i
=

φt
j
Mtφ

i
= (Mφ

j
)tφ

i
= ct

jφi
. This completes the proof of the

lemma. �

4. (n, k, d, m) Secure Regenerating Codes

In this section, we propose an (n, k, d,m) secure regenerating
code based on the (n, k, d) MBR code. The new parameter
m (0 ≤ m ≤ k) is a secrecy parameter. The (n, k, d,m) secure
regenerating code satisfies Eq. (2) because it can be consid-
ered as the (n, k, d) MBR code. Hence, we can assume that
l = m in Eqs. (5) and (6) without loss of generality. Fur-
thermore, the (n, k, d,m) secure regenerating code satisfies
Eqs. (5) and (6) where l = m, that is, the parameter m means
the perfect secrecy condition such that no information about
secret is obtained from either at most m shares or at most m
piece-vectors.

4.1 Construction

We define two kinds of vectors r j, 1 ≤ j ≤ d, and s j, m+1 ≤
j ≤ d, which are subvectors of the j-th column vector of
the upper-triangular matrix of the message matrix M with
components ui, j in Eq. (15), characterized by the parameter
m.

First, let

r j := [u1, j, u2, j, . . . , uj, j]
t ∈ F j

q, 1 ≤ j ≤ m,

and let

s j := [u1, j, u2, j, . . . , uj−m, j]t ∈ F j−m
q ,

r j := [uj−m+1, j, uj−m+2, j, . . . , uj, j]t ∈ Fm
q ,

⎫⎪⎬⎪⎭ , m + 1 ≤ j ≤ k,

where the above vectors are subvectors of the j-th column
vector of the upper-triangular matrix of M1. Let

s j := [u1, j, u2, j, . . . , uk−m, j]t ∈ Fk−m
q ,

r j := [uk−m+1, j, uk−m+2, j, . . . , uk, j]t ∈ Fm
q ,

}
, k + 1 ≤ j ≤ d,

where the above vectors are subvectors of the (j − k)-th col-
umn vector of M2.

Next, let R1 be the vector consisting of the k vectors r j,
1 ≤ j ≤ k, as follows:

R1 := [rt
1, r

t
2, . . . , r

t
k]t ∈ FLR1

q , (20)

and let R2 be the vector consisting of the d − k vectors r j,
k + 1 ≤ j ≤ d, as follows:

R2 := [rt
k+1, r

t
k+2, . . . , r

t
d]t ∈ FLR2

q , (21)

The length LR1 of the vector R1 and that LR2 of the vector R2
are respectively given as

LR1 =

m∑
j=1

(k − j + 1) =
1
2

m(2k − m + 1), (22)

LR2 = m(d − k). (23)

Let R be the vector consisting of R1 and R2 as follows:

R := [Rt
1,R

t
2]t ∈ FLR

q , (24)

and let S be the vector consisting the d−m vectors s j, m+1 ≤
j ≤ d, as follows:

S := [st
m+1, s

t
m+2, , . . . , s

t
d]t ∈ FLS

q . (25)

The length LR of the vector R and that LS of the vector S are
respectively given as

LR = LR1 + LR2 =
1
2

m(2d − m + 1), (26)

LS =

k∑
j=m+1

(k − j + 1) + (k − m)(d − k)

=
1
2

(m − k)(m − (2d − k + 1)). (27)

Note that LR and LS satisfy B = LS + LR.
Finally, we propose a construction of an (n, k, d,m) se-

cure regenerating code based on an (n, k, d) MBR code by
substituting secret and random symbols for the components
of the message matrix M as follows: the vector S consists
of LS secret symbols that are chosen from a finite field Fq

uniformly and independently, and the vector R consists of
LR random symbols that are independent random elements
uniformly distributed over Fq. Then let S be called a secret,
and let R be called a random vector. We assume that LR ran-
dom symbols are independent of LS secret symbols. The
message matrix M with B distinct entries is then filled up
with all B symbols of S and R. The (n, k, d,m) secure regen-
erating code is then defined by the above setting the secret
S and the random vector R for the message matrix M. Thus,
for each i ∈ {1, . . . , n}, the share ci stored in node i for the
secret S is derived from Eq. (16).

Example 6: Let (k, d,m) = (4, 6, 2). The size B of the
message is then given as B = 18. The lengths LR1 and
LR2 are given as LR1 = 7 and LR2 = 4, respectively. Thus
LR = LR1 + LR2 = 11. And then, the length LS is given
as LS = 7. The message matrix M is filled up with eigh-
teen symbols of the random vector R = [r1, . . . , r11]t ∈ F11

q

and seven symbols of the secret S = [s1, . . . , s7]t ∈ F7
q as

follows:

640
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

M =

[
M1 M2

Mt
2 O

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1 r2 s1 s2 s4 s6

r2 r3 r4 s3 s5 s7

s1 r4 r5 r6 r8 r10

s2 s3 r6 r7 r9 r11

s4 s5 r8 r9 0 0
s6 s7 r10 r11 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the vectors r j and s j are given as follows:

r1 = [u1,1]t = [r1]t, r2 = [u1,2, u2,2]t = [r2, r3]t,

r3 = [u2,3, u3,3]t = [r4, r5]t, r4 = [u3,4, u4,4]t = [r6, r7]t,

r5 = [u3,5, u4,5]t = [r8, r9]t, r6 = [u3,6, u4,6]t = [r10, r11]t,

s3 = [u1,3]t = [s1]t, s4 = [u1,4, u2,4]t = [s2, r3]t,

s5 = [u1,5, u2,5]t = [r4, r5]t, s6 = [u1,6, u2,6]t = [r6, r7]t,

and

R1 = [rt
1, r

t
2, r

t
3, r

t
4]t = [r1, . . . r7]t,

R2 = [rt
5, r

t
6]t = [r8, . . . r11]t,

S = [st
3, s

t
4, s

t
5, s

t
6]t = [s1, . . . s7]t.

Shah et al. [9] have recently presented the {�, �′} secure
Product-Matrix MBR code ({�, �′} secure PM-MBR code)†
based on the MBR code [3]. For an MBR code, the secrecy
model of their code is identical to that of our code. In a
construction a of secure regenerating code, their code and
our code use the same MBR code [3] as an underlying code.
When � = m and �′ = 0, their code with parameters [n, k, d]
and our (n, k, d,m) secure regenerating code have the same
secrecy ability. However, their code is different from our
code since the massage matrix of their code is different from
that of our code. We denote the same points and the different
points between their code and our code in the case of the
same secrecy ability below.

1. Their code and our code have the same features in the
following:

a. The size of submatrices M1, M2.
b. The arrangement of submatrices in the message

matrix M.
c. The number of secret symbols contained in each

of submatrices.
d. The number of random symbols contained in each

of submatrices.

2. Their code and our code differ in the position of ran-
dom symbols and that of secret symbols. In their con-
struction method [9, Sect.III-B] for {� = m, �′ = 0}
secure PM-MBR code, the

(
md −

(
m
2

))
random sym-

bols are substituted for the
(
md −

(
m
2

))
components of

the first m rows of the message matrix M, where(
md −

(
m
2

))
= LR.

4.2 Reconstruction and Regeneration

We consider a reconstruction and a regeneration for an

(n, k, d,m) secure regenerating code. When we treat B sym-
bols of LS secret symbols and LR random symbols in the
message matrix M for the (n, k, d,m) secure regenerating
code as B message symbols of the underlying (n, k, d) MBR
code, the (n, k, d,m) secure regenerating code becomes iden-
tical to the (n, k, d) MBR code. Thus, a data-collector can
reconstruct the message matrix M with the secret S and
the random vector R from any k shares by using the recon-
struction method [3, Theorem 3] for the (n, k, d) MBR code.
After that, the data-collector can obtain the secret S from
the reconstructed message matrix M. Consequently, the
(n, k, d,m) secure regenerating code satisfies Eq. (3). Simi-
larly, a failed node can repair the share from a piece-vector
consisting of d pieces from any d helper-nodes by using the
regenerating method described in Sect. 3.3. Consequently,
the (n, k, d,m) secure regenerating code satisfies Eq. (4).

5. Evaluation

In this section, we evaluate the security of an (n, k, d,m) se-
cure regenerating code proposed in Sect. 4. We introduce a
parameter t, 0 ≤ t ≤ n, to evaluate the proposed codes.

Considering the (n, k, d,m) secure regenerating code
with a secret S , the secret S is encoded to n shares c1, . . . , cn
by using Eq. (16).

First, we consider the security of the (n, k, d,m) secure
regenerating code for any t shares, that is, we evaluate the
conditional entropy H(S |Ci1 , . . . ,Cit) of a random variable S
representing a secret S given t random variables Ci1 , . . . ,Cit
representing any t shares ci1

, . . . , cit
. For simplifying the no-

tation of the index, let (i1, i2, . . . , it) = (1, 2, . . . , t), without
loss of generality. We show the following first main theo-
rem.

Theorem 7: For t random variables C1, . . . ,Ct represent-
ing any t shares c1, . . . , ct,

H(S |C1, . . . ,Ct) =
g(t)
LS

H(S), (28)

where the function g(t) of an integer variable t is defined by

g(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
LS , (0 ≤ t ≤ m),
1
2 (t−k)(t−(2d−k+1)), (m+1 ≤ t ≤ k−1),
0, (k ≤ t ≤ n).

(29)

Notice that H(S) = LS from the definition of the secret S .
In particular, when t = m, Eq. (28) is identical to Eq. (5)
because of g(m) = LS . Furthermore, when t = k, Eq. (28) is
identical to Eq. (3) because of g(k) = 0.
Proof : See Sect. 6 and Proof 18. �

The function g(t) of a variable t is a convex and monotoni-
cally decreasing function in the range m ≤ t ≤ k. In particu-
lar, g(t) equals LS when t = m, and equals 0 when t = k.

Next, we consider the security of the (n, k, d,m) secure
†See [9] about the details of {�, �′} secure PM-MBR code. The

parameters � and �′ are different from the parameter l used in
Eq. (6).

KURIHARA and KUWAKADO: SECURE REGENERATING CODES BASED ON RSK-MBR CODES
641

regenerating code for any t piece-vectors, that is, we eval-
uate the conditional entropy H(S |Di1 , . . . ,Dit) of a random
variable S representing a secret S given t random variables
Di1 , . . . ,Dit representing t piece-vectors di1

, . . . , dit
of any t

failed nodes i1, . . . , it. For simplifying the notation of the
index, let (i1, i2, . . . , it) = (1, 2, . . . , t), without loss of gener-
ality. We show the following second main theorem.

Theorem 8: For t random variables D1, . . . ,Dt represent-
ing t piece-vectors d1, . . . , dt of any t failed nodes 1, . . . , t,

H(S |D1, . . . ,Dt) =
g(t)
LS

H(S), (30)

where the function g(t) is defined by Eq. (29). In particu-
lar, when t = m, Eq. (30) is identical to Eq. (6) because of
g(m) = LS .
Proof : From Corollary 4 and Theorem 7, H(S |D1, . . . ,Dt) =
H(S |C1, . . . ,Ct) = g(t)H(S)/LS . �

From Theorems 7 and 8, the (n, k, d,m) secure regenerating
codes have the secrecy property of a ramp secret sharing
scheme, and we have the following remark.

Remark 9: We mentioned the secrecy capacity and its up-
per bound for an MBR code at last part in Sect. 2. For an
MBR code, we can assume that l = m without loss of gen-
erality, and have the inequation (12). For the parameters
(α = d, β = 1) of the (n, k, d,m) secure regenerating code,
the inequation (12) is represented as

CS (n, k, d, d, 1; m,m) ≤
k∑

j=m+1

(d − j + 1) = LS . (31)

On the other hand, the (n, k, d,m) secure regenerating code
satisfies the properties of reconstruction and regeneration
in Eqs. (3) and (4), respectively, as mentioned in Sect. 4.2.
Moreover, from Theorems 7 and 8, when t = m, the
(n, k, d,m) secure regenerating code satisfies the secrecy
properties of Eqs. (5) and (6), respectively. Hence, the
(n, k, d,m) secure regenerating code achieves the upper
bound of the secrecy capacity CS (n, k, d, d, 1; m,m) because
of H(S) = LS .

Finally, apart from the argument about the security of
the ramp type of Eqs. (28) and (30), we assume that an
eavesdropper can obtain n pieces d f ,1, . . . , d f ,n for a failed
node f in a network. Note that each piece d f ,i, i ∈ {1, . . . , n},
for the failed node f is computed in node i. And then, we
show the security of the (n, k, d,m) secure regenerating code
for pieces such that no information of a secret leaks to an
eavesdropper even if the eavesdropper can obtain n pieces
d f ,1, . . . , d f ,n for the failed node f .

Theorem 10: If m ≥ 1 for an (n, k, d,m) secure regenerat-
ing code, then for n random variables Df ,1, . . . ,Df ,n repre-
senting n pieces d f ,1, . . . , d f ,n,

H(S |Df ,1, . . . ,Df ,n) = H(S). (32)

Proof : For any d nodes h1, . . . , hd, let d f =
[
d f ,h1
, . . . , d f ,hd

]t.

Let Df ,hp and Df be random variables representing a piece
d f ,hp

and a piece-vector d f , respectively, and then let
Df = [Df ,h1 , . . . ,Df ,hd]. From Theorem 8, H(S |Df) =
H(S) when m ≥ 1. For any node j ∈ {1, . . . , n} \
{h1, h2, . . . , hd}, H(Df , j|Df) = 0 because d f , j is uniquely
computed from the piece-vector d f and the coding vec-
tor φ

j
associated with node j as follows. First, from

Eq. (19), c f can be uniquely computed from d f . Next,
from Lemma 5, we have that ct

fφ j
= ct

jφ f
= d f , j.

Thus, each piece d f , j can be uniquely computed from d f

and φ
j
, that is, H(Df , j |Df) = 0. As a result, we have

H(S) = H(S |Df) = H(S |Df ,Df , j). Therefore, H(S) =
H(S |Df) = H(S |Df ,Df , j1) = H(S |Df ,Df , j1 ,Df , j2) =
· · · = H(S |Df ,Df , j1 , . . . ,Df , jn−d) = H(S |Df ,1 · · ·Df ,n),
where j1, . . . , jn−d ∈ {1, . . . , n}\{h1, . . . , hd}. This completes
the proof of the lemma. �

6. Proof of Theorem 7

In this section, we define vectors u(1), u(2), u(3), v(1), v(2), w, v,
which are dependent to the parameter t introduced in Sect. 5
where 0 ≤ t ≤ k, in order to prove Theorem 7. These vectors
are mainly used in the proof of Theorem 15.

6.1 Vectors Consisting of Components of the Message
Matrix M

We define three kinds of vectors u(1)
j , 1 ≤ j ≤ k, u(2)

j , k +

1 ≤ j ≤ d, and u(3)
j , t + 1 ≤ j ≤ d, which are related

to the j-th column vector of upper-triangular matrix of the
message matrix M with components ui, j, characterized by
the parameter t. The way of definition of the vectors is the
same as that in Sect. 4. The vectors u(1)

j , u(2)
j and u(3)

j are
corresponding to the vectors r j, 1 ≤ j ≤ k, r j, k + 1 ≤ j ≤ d,
and s j, m + 1 ≤ j ≤ d, in Sect. 4, respectively.

First, let

u(1)
j := [u1, j, u2, j, . . . , uj, j]

t ∈ F j
q, 1 ≤ j ≤ t,

and let

u(3)
j := [u1, j, u2, j, . . . , uj−t, j]t ∈ F j−t

q ,

u(1)
j := [uj−t+1, j, uj−t+2, j, . . . , uj, j]t ∈ Ft

q

⎫⎪⎪⎬⎪⎪⎭ , t + 1 ≤ j ≤ k,

where the above vectors are subvectors of the j-th column
vector of the upper-triangular matrix M1. Let

u(3)
j := [u1, j, u2, j, . . . , uk−t, j]t ∈ Fk−t

q ,

u(2)
j := [uk−t+1, j, uk−t+2, j, . . . , uk, j]t ∈ Ft

q

⎫⎪⎪⎬⎪⎪⎭ , k + 1 ≤ j ≤ d,

where the above vectors are subvectors of the (j − k)-th col-
umn vector of M2.

Next, from the above defined vectors, the vector u(1)

consisting of the k vectors u(1)
j , 1 ≤ j ≤ k, is defined by

u(1) := [(u(1)
1)t, (u(1)

2)t, . . . , (u(1)
k)t]t ∈ FL1

q , (33)

642
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

where (u(1)
j)t is the transpose of the vector u(1)

j , and the vector

u(2) consisting of the d − k vectors u(2)
j , k + 1 ≤ j ≤ d, is

defined by

u(2) := [(u(2)
k+1)t, (u(2)

k+2)t, . . . , (u(2)
d)t]t ∈ FL2

q . (34)

By substituting t for m in Eq. (22) and Eq. (23), the lengths
L1 and L2 of the vectors u(1) and u(2) are respectively given
by

L1 =
1
2

t(2k − t + 1), (35)

L2 = t(d − k). (36)

Finally, the vector u(3) consisting of the d − t vectors u(3)
j ,

t + 1 ≤ j ≤ d, is defined by

u(3) := [(u(3)
t+1)t, (u(3)

t+2)t, . . . , (u(3)
d)t]t ∈ FB−L1−L2

q . (37)

Example 11: (Example 6 continued) Let (k, d, t) =

(4, 6, 3). The size B of the message is equal to that of Exam-
ple 6, i.e., B = 18 because of (k, d) = (4, 6) in both exam-
ples. On the other hand, the lengths L1 and L2 are given as
L1 = 9 and L2 = 6, respectively. And then, the length of the
vector u(3) is equal to B − L1 − L2 = 3. The message matrix
M is given as follows:

M =

[
M1 M2

Mt
2 O

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3 u1,4 u1,5 u1,6

u1,2 u2,2 u2,3 u2,4 u2,5 u2,6

u1,3 u2,3 u3,3 u3,4 u3,5 u3,6

u1,4 u2,4 u3,4 u4,4 u4,5 u4,6

u1,5 u2,5 u3,5 u4,5 0 0
u1,6 u2,6 u3,6 u4,6 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the vectors u(1)
j , u(2)

j and u(3)
j are given as follows:

u(1)
1 = [u1,1]t, u(1)

2 = [u1,2, u2,2]t, u(1)
3 = [u1,3, u2,3, u3,3]t,

u(3)
4 = [u1,4]t, u(1)

4 = [u2,4, u3,4, u4,4]t,

u(3)
5 = [u1,5]t, u(2)

5 = [u2,5, u3,5, u4,5]t,

u(3)
6 = [u1,6]t, u(2)

6 = [u2,6, u3,6, u4,6]t,

and

u(1) = [(u(1)
1)t, (u(1)

2)t, (u(1)
3)t, (u(1)

4)t)]t ∈ F9
q,

u(2) = [(u(2)
5)t, (u(2)

6)t]t ∈ F6
q,

u(3) = [(u(3)
4)t, (u(3)

5)t, (u(3)
6)t]t ∈ F3

q.

6.2 Vectors Consisting of Components of t Shares

In this section, by using the same parameter t used in the
previous Sect. 6.1, we define four vectors v(1), v(2), w, and v.

For any t shares ci1
, ci2
, . . . , cit

, we consider making
replacement all components of them to new three vectors
v(1), v(2), and w. For simplifying the notation of the index, let
(i1, i2, . . . , it) = (1, 2, . . . , t).

Let A be a set of all components of the t shares
c1, . . . , ct. The cardinality of the set A is equal to dt. We

consider a direct sum decomposition of A such that A is a
direct sum of A1 and A2 so that for any element in A2, the
element can be represented by a linear combination of ele-
ments in A1 over Fq. To construct such a pair of subsets A1

and A2 of A, we define three kinds of vectors v(1)
j , v(2)

j and w j
below.

For any t shares c1, c2, . . . , ct, let C(t) be a t × d matrix
with components of the t shares as follows:

C(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 · · · c1,t−1 c1,t · · · c1,k c1,k+1 · · · c1,d

c2,1 · · · c2,t−1 c2,t · · · c2,k c2,k+2 · · · c2,d
...
. . .
...

...
. . .
...
...

. . .
...

ct,1 · · · ct,t−1 ct,t · · · ct,k ct,k+1 · · · ct,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (38)

where the i-th row of the matrix C(t) is the vector of a share
ct

i, 1 ≤ i ≤ t.
First, for the j-th column of the matrix C(t), we define

the following three kinds of vectors v(1)
j , 1 ≤ j ≤ k, v(2)

j ,
k + 1 ≤ j ≤ d, and w j, 1 ≤ j ≤ t − 1. Let

v(1)
j := [c1, j, c2, j, . . . , c j, j]t ∈ F j

q,

w j := [c j+1, j, c j+2, j, . . . , ct, j]t ∈ Ft− j
q

⎫⎪⎪⎬⎪⎪⎭ , 1≤ j≤ t−1,

and let

v(1)
j := [c1, j, c2, j, . . . , ct, j]

t ∈ Ft
q, t ≤ j ≤ k,

v(2)
j := [c1, j, c2, j, . . . , ct, j]

t ∈ Ft
q, k + 1 ≤ j ≤ d.

Next, from the above defined vectors, let v(1) be a vector
consisting of the k vectors v(1)

j , 1 ≤ j ≤ k, as follows:

v(1) := [(v(1)
1)t, (v(1)

2)t, . . . , (v(1)
k)t]t ∈ FL1

q , (39)

and let v(2) be a vector consisting of the d − k vectors v(2)
j ,

k + 1 ≤ j ≤ d, as follows:

v(2) := [(v(2)
k+1)t, (v(2)

k+2)t, . . . , (v(2)
d)t]t ∈ FL2

q . (40)

Let v be a vector consisting of v(1) and v(2) as follows:

v := [(v(1))t, (v(2))t]t ∈ FL1+L2
q . (41)

The lengths L1 and L2 correspond to Eq. (35) and Eq. (36)
respectively. Let w be a vector consisting of the t−1 vectors
w j, 1 ≤ j ≤ t − 1, as follows:

w := [wt
1, w

t
2, . . . , w

t
t−1]t ∈ Fdt−L1−L2

q . (42)

Example 12: (Example 11 continued) Let (k, d, t) =

(4, 6, 3). The parameters (B, L1, L2) and the matrix C(t) are
given as follows: (B, L1, L2) = (18, 9, 6) and

C(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
c1,1 c1,2 c1,3 c1,4 c1,5 c1,6

c2,1 c2,2 c2,3 c2,4 c2,5 c2,6

c3,1 c3,2 c3,3 c3,4 c3,5 c3,6

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (43)

where t = 3, and the vectors v(1)
j , v(2)

j , and w j are given as
follows:

v(1)
1 = [c1,1]t, w1 = [c2,1, c3,1]t,

KURIHARA and KUWAKADO: SECURE REGENERATING CODES BASED ON RSK-MBR CODES
643

v(1)
2 = [c1,2, c2,2]t, vw2 = [c3,2]t,

v(1)
3 = [c1,3, c2,3, c3,3]t, v(1)

4 = [c1,4, c2,4, c3,4]t,

v(2)
5 = [c1,5, c2,5, c3,5]t, v(2)

6 = [c1,6, c2,6, c3,6]t,

and

v(1) = [(v(1)
1)t, (v(1)

2)t, (v(1)
3)t, (v(1)

4)t]t ∈ F9
q,

v(2) = [(v(2)
5)t, (v(2)

6)t]t ∈ F6
q,

w = [wt
1, w

t
2]t ∈ F3

q.

Finally, let A1 be a set consisting of all components of
the vector v, and let A2 be a set consisting of all components
of the vector w. From the definition of v and w, it is true
that the set A is the direct sum of A1 and A2. Note that the
cardinality of A1 is equal to L1 + L2, and that of A2 is equal
to dt − L1 − L2.

We show the relation between the sets A1 and A2 in the
following lemma.

Lemma 13: For any element in A2, the element can be rep-
resented by a linear combination of elements in A1 over Fq.
In other words, each component of the vector w can be repre-
sented by a linear combination of components of the vector
v over Fq.
Proof: See Appendix B. �

Let V and W be random variables representing a vector
v of Eq. (41) and a vector w of Eq. (42), respectively. From
the definitions of vectors of v and w, the random variable V
and W are defined from only t random variables C1, . . . ,Ct.
We have the following lemma from Lemma 13.

Lemma 14: For t random variables C1, . . . ,Ct represent-
ing any t shares c1, . . . , ct, the conditional entropy H(W |V)
of W given V is given by H(W |V) = 0.
Proof : From Lemma 13, each component of w can be
uniquely determined from components of v. This completes
the proof of the lemma. �

We show the conditional entropy H(S |V) of S given V
in the following theorem.

Theorem 15: For t random variables C1, . . . ,Ct represent-
ing any t shares c1, . . . , ct, the conditional entropy H(S |V)
of S given V is given by

H(S |V) =
g(t)
LS

H(S), (44)

where the function g(t) is defined by Eq. (29).
Proof : See Appendix C. �

Example 16: (Example 6 continued) Let (k, d,m) =

(4, 6, 2). The parameters (B, LS , LR) are then given as fol-
lows: (B, LS , LR) = (18, 7, 11). For each t such that 0 ≤ t ≤
n, the conditional entropy H(S |V) of S given V is as follows:

H(S |V) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
7, (0 ≤ t ≤ 2),
3, (t = 3),
0, (4 ≤ t ≤ n).

�

From Lemma 14, we have the following theorem.

Theorem 17: For t random variables C1, . . . ,Ct represent-
ing any t shares c1, . . . , ct,

H(S |C1, . . . ,Ct) = H(S |V). (45)

Proof :

H(S |C1, . . . ,Ct) = H(S |V,W) = H(S |V). (46)

The first equality follows from the relation between [vt, wt]
and [ct

1, . . . , c
t
t] such that the vector [vt, wt] is given by rear-

ranging components of the vector [ct
1, . . . , c

t
t] which consists

of t shares. The second equality follows from Lemma 14.
�

Finally, a proof of Theorem 7 is derived from the above
argument as follows:

Proof 18 (Proof of Theorem 7): From Theorems 15 and
17, Theorem 7 is valid. �

7. Conclusions

In this paper, we have presented a construction of the
(n, k, d,m) secure regenerating codes based on the (n, k, d)
MBR codes given by Rashmi et al. [3] for all values of
the parameters (n, k, d). The (n, k, d,m) secure regenerat-
ing codes have the security of a ramp secret sharing scheme
and achieve the upper bound of the secrecy capacity. The
complexities of encoding, reconstruction and regeneration
are the same as that of the underlying MBR code.

References

[1] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K.
Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol.56, no.9, pp.4539–4551, Sept. 2010.

[2] S. Pawar, S.E. Rouayheb, and K. Ramchandran, “Securing dynamic
distributed storage systems against eavesdropping and adversarial
attacks,” IEEE Trans. Inf. Theory, vol.57, no.10, pp.6734–6753, Oct.
2011.

[3] K.V. Rashmi, N.B. Shah, and P.V. Kumar, “Optimal exact-
regenerating codes for distributed storage at the MSR and MBR
points via a product-matrix construction,” IEEE Trans. Inf. Theory,
vol.57, no.8, pp.5227–5239, Aug. 2011.

[4] M. Kurihara and H. Kuwakado, “On regenerating codes and secret
sharing for distributed storage,” IEICE Technical Report, IT2010-
56, Jan. 2011. (in Japanese)

[5] M. Kurihara and H. Kuwakado, “On an extended version of Rashmi-
Shah-Kumar regenerating codes and secret sharing for distributed
storage,” IEICE Technical Report, IT2010-114, March 2011. (in
Japanese)

[6] M. Kurihara and H. Kuwakado, “On ramp secret sharing schemes
for distributed storage systems under repair dynamics,” IEICE Tech-
nical Report, IT2011-17, July 2011. (in Japanese)

[7] H. Kuwakado and M. Kurihara, “Computationally-secure regenerat-
ing code,” Proc. Computer Security Symposium 2011, pp.131–136,
19–21, Oct. 2011.

[8] M. Kurihara and H. Kuwakado, “Ramp secret sharing schemes
based on MBR codes,” IEICE Technical Report, ISEC2011-43, Nov.
2011. (in Japanese)

644
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

[9] N.B. Shah, K.V. Rashmi, and P.V. Kumar, “Information-
theoretically secure regenerating codes for distributed storage,”
IEEE Global Communications Conference (GLOBECOM) 2011,
Dec. 2011.

[10] M. Kurihara and H. Kuwakado, “Secure regenerating codes based
on MSR codes for distributed storage systems,” IEICE Trans. Fun-
damentals (Japanese Edition), to be published.

[11] M. Kurihara and H. Kuwakado, “Secret sharing schemes based on
minimum bandwidth regenerating codes,” Int. Symp. Inf. Theory
and its Appl.(ISITA), Oct. 2012.

Appendix A: Proof of Theorem 1

We consider two cases of l < m and l ≥ m for the param-
eters l and m. The following proof is similar to that of [2,
Appendix A].

First, in the case of l < m, since H(S |Di1 , . . . ,Dil) =
H(S) = H(S |Ci1 , . . . ,Cim) from the two secrecy conditions
of the secrecy capacity by Eq. (10), we have

H(S)
(a)
= H(S |Di1 , . . . ,Dil) − H(S |Ci1 , . . . ,Cik)
(b)
= H(S |Ci1 , . . . ,Cim) − H(S |Ci1 , . . . ,Cik)

= I(S ; Cim+1 , . . . ,Cik |Ci1 , . . . ,Cim)

= H(Cim+1 , . . . ,Cik |Ci1 , . . . ,Cim)

− H(Cim+1 , . . . ,Cik |Ci1 , . . . ,Cim , S)

≤ H(Cim+1 , . . . ,Cik |Ci1 , . . . ,Cim)

(c)
=

k∑
j=m+1

H(Cij |Ci1 , . . . ,Cij−1)

(d)≤
k∑

j=m+1

min{(d − j + 1)β, α},

where I(S ; Cim+1 , . . . ,Cik |Ci1 , . . . ,Cim) denotes the condi-
tional mutual information of S and Cim+1 , . . . ,Cik given
Ci1 , . . . ,Cim , equality (a) follows from H(S |Di1 , . . . ,Dil) =
H(S) and H(S |Ci1 , . . . ,Cik) = 0, (b) follows from
H(S |Di1 , . . . ,Dil) = H(S) = H(S |Ci1 , . . . ,Cim), (c) follows
from Chain rule of entropy, and (d) follows from the same
reason of [2, Inequality (3) in Appendix A].

Next, in the case of l ≥ m, since H(S |Di1 , . . . ,Dil) =
H(S) implies H(S |Ci1 , . . . ,Cil) = H(S) from Eq. (9), we
have

H(S) = H(S |Di1 , . . . ,Dil) − H(S |Ci1 , . . . ,Cik)
(e)
= H(S |Ci1 , . . . ,Cil) − H(S |Ci1 , . . . ,Cik)

= I(S ; Cil+1 , . . . ,Cik |Ci1 , . . . ,Cil)

= H(Cil+1 , . . . ,Cik |Ci1 , . . . ,Cil)

− H(Cil+1 , . . . ,Cik |Ci1 , . . . ,Cil , S)

≤ H(Cil+1 , . . . ,Cik |Ci1 , . . . ,Cil)

=

k∑
j=l+1

H(Cij |Ci1 , . . . ,Cij−1)

≤
k∑

j=l+1

min{(d − j + 1)β, α},

where equality (e) follows from H(S |Ci1 , . . . ,Cil) = H(S)
by Eq. (9).

From the above argument about both cases and the def-
inition of the secrecy capacity by Eq. (10), we have the fol-
lowing upper bound of the secrecy capacity:

CS ≤
k∑

j=max{l,m}+1

min{(d − j + 1)β, α}.

�

Appendix B: Proof of Lemma 13

First, we show the relation between two shares in the fol-
lowing lemma.

Lemma 19: For any two shares ci = [ci,1, . . . , ci,d]t and
c j = [c j,1, . . . , c j,d]t,

d∑
a=1

(xa−1
j ci,a − xa−1

i c j,a) = 0, (A· 1)

where xi and x j are elements assigned to node i and j, re-
spectively.
Proof : From ci,a =

∑d
b=1 ua,bxb−1

i , c j,a =
∑d

b=1 ua,bxb−1
j ,

rewriting the left-hand side of Eq. (A· 1) shows that

d∑
a=1

d∑
b=1

(xa−1
j xb−1

i − xa−1
i xb−1

j)ua,b. (A· 2)

i) If b = a then (xa−1
j xa−1

i − xa−1
i xa−1

j)ua,a = 0 · ua,a = 0. ii)

On the other hand, if b � a then (xa−1
j xb−1

i − xa−1
i xb−1

j)ua,b +

(xb−1
j xa−1

i − xb−1
i xa−1

j)ub,a = 0 because of ua,b = ub,a. There-
fore, this lemma is proved. �

For an integer b such that 2 ≤ b ≤ t, we define the two
kinds of sets A1,i(b), 1 ≤ j ≤ b, and A2,i(b), 2 ≤ j ≤ b, and
three sets A1(b), A2(b) and A(b), which consist of elements
of b shares c1, . . . , cb as follows:

A1,i(b) = {ci, j|i ≤ j ≤ d}, 1 ≤ i ≤ b, (A· 3)

A2,i(b) = {ci, j|1 ≤ j ≤ i − 1}, 2 ≤ i ≤ b, (A· 4)

A1(b) = ∪b
i=1A1,i(b), (A· 5)

A2(b) = ∪b
i=2A2,i(b), (A· 6)

A(b) = A1(b) ∪ A2(b). (A· 7)

The set A(b) is a direct sum set of A1(b) and A2(b) since the
two sets A1(b) and A2(b) are disjoint from the above defini-
tion of the sets. Thus, the set A(b) includes all elements of b
shares c1, . . . , cb.

Let i and b be indexes which satisfy that 1 ≤ i < b ≤ t.
For a pair (i, b) of such indexes i and b, we have the follow-
ing b− 1 linear equations, which are derived by substituting
b for j in Eq. (A· 1), from Lemma 19.

d∑
a=1

(xa−1
b ci,a − xa−1

i cb,a) = 0, 1 ≤ i ≤ b − 1. (A· 8)

KURIHARA and KUWAKADO: SECURE REGENERATING CODES BASED ON RSK-MBR CODES
645

Note that there are components of only two shares ci and
cb in each equation. We rewrite each equation of the above
equations so that b − 1 terms cb,1, . . . , cb,b−1, which are el-
ements of the share cb, are transposed to the left-hand side
of the equation, and all the other terms are transposed to the
right-hand side of the equation, that is,

b−1∑
a=1

xa−1
i cb,a =

d∑
a=b

(xa−1
b ci,a − xa−1

i cb,a)

+

b−1∑
a=1

xa−1
b ci,a, 1 ≤ i ≤ b − 1. (A· 9)

Note that in all bd elements of b shares, b − 1 elements
cb,1, . . . , cb,b−1 belong to the set A2(b), and all the other ele-
ments belong to the set A1(b).

To construct the proof of Lemma 13: “For any element
in A2, the element can be represented by a linear combina-
tion of elements in A1 over Fq”, let P(b) denote the proposi-
tion function for integers b, 2 ≤ b ≤ t : “For any element in
A2(b), the element can be represented by a linear combina-
tion of elements in A1(b) over Fq”.

Basis Step: When b = 2, A2(2) = {c2,1}. P(2) is true,
since from Eq. (A· 9),

c2,1 =

d∑
a=2

(xa−1
2 c1,a − xa−1

1 c2,a) + c1,1. (A· 10)

Inductive Step: Assume that P(b−1) is true, that is, for
any element in A2(b − 1), the element can be represented by
a linear combination of elements in A1(b − 1) over Fq.

We must show that P(b) is true. That is, we must show
that for any element in A2(b), the element can be represented
by a linear combination of elements in A1(b) over Fq. From
the assumption of the inductive step, we only have to show
that for any element in A2(b) \ A2(b − 1), the element can
be represented by a linear combination of elements in A1(b)
over Fq. Note that A2(b) \ A2(b − 1) = {cb,1, . . . , cb,b−1}.

For each pair (i, b) such that 1 ≤ i ≤ b − 1, from
Eq. (A· 9), we have the following b − 1 linear equations:

b−1∑
a=1

xa−1
1 cb,a = Z1,b,

b−1∑
a=1

xa−1
2 cb,a = Z2,b,

...
...

b−1∑
a=1

xa−1
b−1cb,a = Zb−1,b,

where for simplifying the notation of the right-hand side of
Eq. (A· 9), we define that Zi,b =

∑d
a=b(xa−1

b ci,a − xa−1
i cb,a) +∑b−1

a=1 xa−1
b ci,a for 1 ≤ i ≤ b − 1. We rewrite the system of the

b − 1 linear equations in b − 1 unknowns cb,1, . . . , cb,b−1 as
follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 · · · xb−2
1

1 x2 · · · xb−2
2

...
...
. . .

...
1 xb−1 · · · xb−2

b−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cb,1

cb,2
...

cb,b−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1,b

Z2,b
...

Zb−1,b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A· 11)

The leftmost (b − 1) × (b − 1) square matrix of this equation
is nonsingular because the determinant of the square matrix
is the Vandermonde determinant from the conditions for xi.
Therefore, each element of the set {cb,1, . . . , cb,b−1} can be
represented by a linear combination of elements in A1(b)
over Fq. This induction step is complete.

Therefore, by the principle of mathematical induction,
it has been shown that P(b) is true for all integers b such that
2 ≤ b ≤ t. Hence, this completes the proof of the lemma
since A1 = A1(t) and A2 = A2(t) when b = t. �

Appendix C: Proof of Theorem 15

Recall three vectors u(1), u(2) and u(3) defined by Eq. (33),
(34) and (37), respectively. Let [(u(1))t, (u(2))t, (u(3))t] be the
vector consisting of u(1), u(2) and u(3). Moreover, recall three
vectors v(1), v(2) and v defined by Eqs. (39), (40) and (41) ,
respectively, such that v = [(v(1))t, (v(2))t]t.

From the relation between the message symbols and
the components of the shares defined by Eq. (16), we have
the following system of linear equations for the two vectors
[(u(1))t, (u(2))t, (u(3))t]t and v = [(v(1))t, (v(2))t]t :

[
v(1)

v(2)

]
=

[
X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

] ⎡⎢⎢⎢⎢⎢⎢⎢⎣
u(1)

u(2)

u(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (A· 12)

=

[
X1,1 X1,2

X2,1 X2,2

] [
u(1)

u(2)

]
+

[
X1,3

X2,3

]
u(3) (A· 13)

=

[
X1,1

X2,1

]
u(1) +

[
X1,2

X2,2

]
u(2) +

[
X1,3

X2,3

]
u(3) (A· 14)

where all components of the (L1+L2)×B matrix
[

X1,1 X1,2 X1,3
X2,1 X2,2 X2,3

]
of the right-hand side of Eq. (A· 12) are belong to the set
{0} ∪ {x j−1

i |1 ≤ i ≤ t and 1 ≤ j ≤ d}. The matrix X1,1 is an
L1 × L1 square matrix corresponding to u(1), and the matrix
X2,2 is an L2 × L2 square matrix corresponding to u(2). On
the other hand, the matrix X2,1 is an L2 × L1 zero matrix
of which all components are zeros, since each component
of the vector v(2) is represented by a linear combination of
components of the vectors u(2) and u(3) that consist of entries
of the submatrix M2 of the message matrix M. The matrix[

X1,3
X2,3

]
is an (L1 + L2)× (B− L1 − L2) matrix that corresponds

with u(3). (See Example 20)
To show the square matrix

[
X1,1 X1,2
O X2,2

]
corresponding to

[(u(1))t, (u(2))t] is nonsingular, we show that the matrix X1,1

is nonsingular and the matrix X2,2 is nonsingular, that is,
det X1,1 � 0 and det X2,2 � 0.

First, we will show that det X1,1 � 0. From the defi-
nitions of the vectors [(u(1))t, (u(2))t] and [(v(1))t, (v(2))t], the
matrix X1,1 is written as

646
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

X1,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X1 Δ

. . .

O Xk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A· 15)

where X1, . . . , Xk are square matrices such that

Xj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 · · · x j−1
1

1 x2 · · · x j−1
2

...
...
. . .
...

1 x j · · · x j−1
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 1 ≤ j ≤ t − 1, (A· 16)

Xj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x j−t
1 x j−t+1

1 · · · x j−1
1

x j−t
2 x j−t+1

2 · · · x j−1
2

...
...

. . .
...

x j−t
t x j−t+1

t · · · x j−1
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, t ≤ j ≤ k. (A· 17)

And then, X1, . . . , Xk are block diagonal components of
X1,1. The matrix X1,1 is a block upper-triangular matrix,
that is, entries in the strictly block lower-triangular half of
the matrix equal to zero. From the structure of the ma-
trix X1,1, the determinant of the matrix X1,1 is obtained as
det X1,1 =

∏k
j=1 det Xj. For each j, 1 ≤ j ≤ k ≤ t − 1,

det Xj � 0 from the condition for xi, since the determinant
of the matrix Xj is the Vandermonde determinant. Simi-
larly, for each j, t ≤ j ≤ k, det Xj � 0 from the condi-
tion for xi, since the determinant of the matrix Xj is the
scalar multiple of the Vandermonde determinant, that is,
det Xj = x j−t

1 · · · x j−t
t

∏
1≤b<a≤t(xa − xb). Therefore, we have

det X1,1 =
∏k

j=1 det Xj � 0.
Next, we will show that det X2,2 � 0. In a way similar

to the case of the matrix X1,1, from the definitions of the
vectors [(u(1))t, (u(2))t] and [(v(1))t, (v(2))t], the matrix X2,2 is
written as

X2,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Xk+1 O

. . .

O Xd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A· 18)

where Xk+1, . . . , Xd are t × t square matrices such that

Xj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk−t
1 xk−t+1

1 · · · xk−1
1

xk−t
2 xk−t+1

2 · · · xk−1
2

...
...

. . .
...

xk−t
t xk−t+1

t · · · xk−1
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k + 1 ≤ j ≤ d. (A· 19)

And then, Xk+1, . . . , Xd are block diagonal components of
X2,2, that is, X2,2 is a block diagonal matrix. From the
structure of the matrix X2,2, the determinant of the matrix
X2,2 is obtained as det X2,2 =

∏d
j=k+1 det Xj. For each j,

k + 1 ≤ j ≤ d, det Xj � 0 from the condition for xi,
since the determinant of the matrix Xj is the scalar multi-
ple of the Vandermonde determinant. Therefore, we have
det X2,2 =

∏d
j=k+1 det Xj � 0.

From the above argument, we have det
[

X1,1 X1,2
O X2,2

]
=∏2

i=1(det Xi,i) � 0, that is, the matrix
[

X1,1 X1,2
O X2,2

]
is nonsin-

gular.

Finally, we show that Eq. (44) is valid by using the fact
such that the matrix

[
X1,1 X1,2
O X2,2

]
is nonsingular.

Considering the LS secret symbols and the LR random
symbols for the (n, k, d,m) secure regenerating code in the
vectors u(1), u(2) and u(3), we have the following facts for
m ≤ t ≤ k. (See Example 21)

• All the LR random symbols of the random vector R are
components of the vectors u(1) and u(2) from the def-
initions of u(1) and u(2). Note that the number of all
components of u(1) and u(2) is L1+L2, and L1+L2 ≥ LR

when m ≤ t. Let R denote a uniform random variable
representing a random vector R.
• The remaining L1 + L2 − LR components of u(1) and

u(2) are the secret symbols of the secret S . Let S 1 be
a vector consisting of the L1 + L2 − LR secret symbols,
and then, let S 1 denote a random variable representing
the vector S 1.
• The remaining B−L1−L2 secret symbols of the secure

S are components of the vector u(3). Let S 2 be a vector
consisting of the B − L1 − L2 secret symbols, and then,
let S 2 denote a random variable representing the vector
S 2.

By using the random variables S 1, S 2, R and V , the
equation (A· 12) is represented as

H(V |RS 1S 2) = 0. (A· 20)

Furthermore, because of the nonsingular matrix
[

X1,1 X1,2
O X2,2

]
,

the vector [u(1), u(2)] is uniquely determined from the vectors
[v(1), v(2)] and u(3) as follows:

[
u(1)

u(2)

]
=

[
X1,1 X1,2

O X2,2

]−1 ([
v(1)

v(2)

]
−

[
X1,3

X2,3

]
u(3)

)
. (A· 21)

The above equation is represented as

H(RS 1|VS 2) = 0. (A· 22)

From Eqs. (A· 20) and (A· 22), we have

0 ≤ H(S 2) − H(S 2|V) = I(S 2; V)

= H(V) − H(V |S 2)
(a)
= H(V) − H(V |S 2) + H(V |RS 1S 2)

= H(V) − I(V; RS 1|S 2)

= H(V) − H(RS 1|S 2) + H(RS 1|VS 2)
(b)
= H(V) − H(RS 1|S 2)

= H(V) − H(S 1|S 2) − H(R|S 1S 2)
(c)
= H(V) − H(S 1S 2) + H(S 2) − H(R)

= H(V) − LS + B − L1 − L2 − LR

(d)≤ L1 + L2 − L1 − L2

= 0,

where equality (a) follows from Eq. (A· 20), equality
(b) follows from Eq. (A· 22), equality (c) follows from
H(RS 1|S 2V) = H(R) because R is independent of S 1S 2, and

KURIHARA and KUWAKADO: SECURE REGENERATING CODES BASED ON RSK-MBR CODES
647

inequality (d) follows from H(V) ≤ L1+L2 and B = LS +LR.
The above logic is a generalized version of that of Shah et
al. [9, Eqs. (14)–(20)]. When t = m, that is, L1 + L2 = LR,
our logic is identical to that of Shah et al. as a special case.
Therefore, for m ≤ t ≤ k, we have H(S 2|V) = H(S 2) and

H(S |V) = H(S 1S 2|V)

= H(S 2|V) + H(S 1|S 2V)
(a)
= H(S 2|V) = H(S 2)

= B − L1 − L2 =
1
2

(t − k)(t − (2d − k + 1))

= g(t), (A· 23)

where equality (a) follows from Eq. (A· 22).

1. In the case of 0 ≤ t ≤ m: i) For t = m, we have
H(S |V) = g(m) = LS = H(S) from Eq. (A· 23). ii) For
0 ≤ t ≤ m− 1, we have H(S |V) ≥ H(S) from the above
result i). Note that V is characterized by the parameter
t in Eq. (41). On the other hand, in general, we have
H(S |V) ≤ H(S). Hence, H(S |V) = H(S). Thus, from
both cases of i) and ii), we have H(S |V) = H(S) = LS

for 0 ≤ t ≤ m.
2. In the case of m+1 ≤ t ≤ k−1: We have H(S |V) = g(t)

for m + 1 ≤ t ≤ k − 1 from Eq. (A· 23).
3. In the case of k ≤ t ≤ n: i) For t = k, we have H(S |V) =
g(k) = 0 from Eq. (A· 23). ii) For k+1 ≤ t ≤ n, we have
H(S |V) ≤ 0 from the above result i). On the other hand,
in general, we have H(S |V) ≥ 0. Hence, H(S |V) = 0.
Thus, from both cases of i) and ii), we have H(S |V) = 0
for k ≤ t ≤ n.

This completes the proof of Theorem 15. �

Example 20: (Example 12 continued) Let (k, d, t) =

(4, 6, 3). We have then the vectors and the matrices in
Eq. (A· 13) as follows:

[
v(1)

v(2)

]
=

⎡⎢⎢⎣

c1,1

c1,2

c2,2

c1,3

c2,3

c3,3

c1,4

c2,4

c3,4

c1,5

c2,5

c3,5

c1,6

c2,6

c3,6

⎤⎥⎥⎦

,

[
u(1)

u(2)

]
=

⎡⎢⎢⎣

u1,1

u1,2

u2,2

u1,3

u2,3

u3,3

u2,4

u3,4

u4,4

u2,5

u3,5

u4,5

u2,6

u3,6

u4,6

⎤⎥⎥⎦

, u(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
u1,4

u1,5

u1,6

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

[
X1,1 X1,2

O X2,2

]

=

⎡⎢⎢⎢⎣

1 x1 0 x2
1 0 0 0 0 0 0 0 0 0 0 0

0 1 x1 0 x2
1 0 x3

1 0 0 x4
1 0 0 x5

1 0 0

0 1 x2 0 x2
2 0 x3

2 0 0 x4
2 0 0 x5

2 0 0

0 0 0 1 x1 x2
1 0 x3

1 0 0 x4
1 0 0 x5

1 0

0 0 0 1 x2 x2
2 0 x3

2 0 0 x4
2 0 0 x5

2 0

0 0 0 1 x3 x2
3 0 x3

3 0 0 x4
3 0 0 x5

3 0

0 0 0 0 0 0 x1 x2
1 x3

1 0 0 x4
1 0 0 x5

1

0 0 0 0 0 0 x2 x2
2 x3

2 0 0 x4
2 0 0 x5

2

0 0 0 0 0 0 x3 x2
3 x3

3 0 0 x4
3 0 0 x5

3

0 0 0 0 0 0 0 0 0 x1 x2
1 x3

1 0 0 0

0 0 0 0 0 0 0 0 0 x2 x2
2 x3

2 0 0 0

0 0 0 0 0 0 0 0 0 x3 x2
3 x3

3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 x1 x2

1 x3
1

0 0 0 0 0 0 0 0 0 0 0 0 x2 x2
2 x3

2

0 0 0 0 0 0 0 0 0 0 0 0 x3 x2
3 x3

3

⎤⎥⎥⎥⎦

,

[
X1,3

X2,3

]
=

⎡⎢⎢⎣

x3
1 x4

1 x5
1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

⎤⎥⎥⎦

.

Example 21: (Examples 6 and 11 continued) Let (k, d,
m, t) = (4, 6, 2, 3). We have B = 18, LS = 7, LR =

11, L1 = 9 and L2 = 6. We consider the relation between
the seven secret symbols s1, . . . , s6 and the 11 random sym-
bols r1, . . . , r11 and the vectors u(1), u(2) and u(3). The vectors
u(1)

j , u(2)
j and u(3)

j are as follows:

u(1)
1 = [u1,1]= [r1], u(1)

2 = [u1,2, u2,2]t= [r2, r3]t,

u(1)
3 = [u1,3, u2,3, u3,3]t= [s1, r4, r5]t,

u(3)
4 = [u1,4]= [s2], u(1)

4 = [u2,4, u3,4, u4,4]t= [s3, r6, r7]t,

u(3)
5 = [u1,5]= [s4], u(2)

5 = [u2,5, u3,5, u4,5]t= [s5, r8, r9]t,

u(3)
6 = [u1,6]= [s6], u(2)

6 = [u2,6, u3,6, u4,6]t= [s7, r10, r11]t,

and

u(1) = [r1, r2, r3, s1, r4, r5, s3, r6, r7]t ∈ F9
q,

u(2) = [s5, r8, r9, s7, r10, r11]t ∈ F6
q,

u(3) = [s2, s4, s6]t ∈ F3
q.

Furthermore, the four secret symbols s1, s3, s5, s7 are com-
ponents of the vector S 1 and the remaining three secret sym-
bols s2, s4, s6 are components of the vector S 2.

648
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.2 FEBRUARY 2013

Masazumi Kurihara received the B.S.
degree in Mathematics from Tokyo Metropoli-
tan University in 1990, and the M.E. and Ph.D.
degrees in Computer Science and Information
Mathematics from the University of Electro-
Communications (UEC) in 1992 and 2002, re-
spectively. From 1992 to 2007, he was a
research associate in the Faculty of Electro-
Communications at UEC. From 2007 to 2010,
he was an assistant professor in the Faculty of
Electro-Communications at UEC. Since 2010,

he was an assistant professor in the Graduate School of Informatics and
Engineering. His research interests are in algebraic coding theory.

Hidenori Kuwakado received the B.E.,
M.E. and D.E. degrees from Kobe University in
1990, 1992, and 1999 respectively. He worked
for Nippon Telegraph and Telephone Corpora-
tion from 1992 to 1996. From 1996 to 2002 he
was a Research Associate in the Faculty of En-
gineering, Kobe University. From 2002 to 2007,
he was an Associate Professor in the Faculty
of Engineering, Kobe University. Since 2007,
he has been an Associate Professor in Graduate
School of Engineering, Kobe University. His re-

search interests are in cryptography and information security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

