組合せネットワーク上のルーティング制御とその応用

栗原正純 (電気通信大学 情報通信工学科) 楯岡孝道 (電気通信大学 情報工学科)

- 1. ネットワーク符号化
- 2. ネットワークルーティング
- 3. 組合せネットワーク
- 4. ルーティング制御
- 5. その応用(マルチソースネットワーク)

2006/03/17(名古屋大)

Network Coding and Network Coding Capacity

R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, "Network information flow," 2000.

- Multicast
- Network Coding Capacity ← Max-Flow Bound

S.-Y. R. Li, R. W. Yeung, and N. Cai, "Linear network coding," 2003.

Figure 1: Multicast Network with Link Capacity $= 1 \Rightarrow$ Network Coding Capacity = 2

Network Routing and Network Routing Capacity

R. W. Yeung, "Two Approaches to Quantifying the Bandwidth Advantage of Network Coding," 2004.

- Coding gain and bandwidth saving
- Network Routing Capacity \leftarrow [Cannons et al.]

Figure 2: Multicast by routing: Network Routing Capacity = 1.5

Network Routing and Network Routing Capacity

- J. Cannons, R. Dougherty, C. Frieling, and K. Zeger, "Network Routing Capacity," 2005.
- Dividing a symbol into $h \Rightarrow 1/h$ symbol, where h is a positive integer.
- M. Medard, M. Effros, T. Ho, D. Karger, "On Coding for Non-Multicast Networks," 2003.

Figure 3: Special network coding

1/h symbol

Figure 4: Dividing a symbol into h

Examples (h = 2, 3)

- ullet N : the number of 1/h symbols , which can be translated from the source node to all the same sink nodes by routing
- ullet N/h : the achievable routing quantity of symbol of the network

Figure 5: N/h = 3/2

Figure 6: N/h = 4/3

Definition of Network Routing Capacity ([Cannons et al.])

Network Routing Capacity := $\max\{ N/h \mid \text{all achievable routing quantities } \}$

An Example:

Figure 7: h=2 and $N=3\Rightarrow$ Network Routing Capacity =3/2

組合せネットワーク $\binom{n}{m}$ Combination Network $) \Rightarrow \binom{n}{m}$ NW

Figure 8: $\binom{n}{m}$ Combination Network

- Three layers of nodes:
 - Top layer : source node
 - Middle layer : n intermediate nodes
 - Bottom layer : $\binom{n}{m}$ sink nodes
- Multicast Network
- Link Capacity= 1

Routing Capacity of an $\binom{n}{m}$ NW([Cannons et al.])

Figure 9: $\binom{n}{m}$ NW

- 1. $(n-m+1)/h \times N \le n$ $\Rightarrow N/h \le n/(n-m+1).$
- 2. $N/h \leq m$.
- 3. $n/(n-m+1) \leq m$, where $1 \leq m \leq n$.
- 4. Routing Capacity $= \frac{n}{n-m+1}.$

ルーティング制御: Routing Control on an $\binom{n}{m}$ NW

- $N := n \text{ and } h := n m + 1 \Rightarrow N/h = n/(n m + 1).$
- $\{a_0, a_1, a_2, \ldots, a_{n-1}\}$: $n \ 1/h$ symbols.
- Cyclic shift transfer : Souce node $\Rightarrow n$ intermediate nodes; the method of translating h symbols from source node to each intermediate node

Figure 10: Cyclic shift transfer

Figure 11: N=3, h=2 and Routing capacity =N/h=3/2

Routing Control on an $\binom{n}{m}$ NW

- $\{a_0, a_1, a_2, \ldots, a_{n-1}\}$: $n \ 1/h$ symbols.
- ullet h_{i_k} : the number of 1/h symbols translated from the intermediate node of No. i_k to the sink node
- ullet $(h_{i_0},h_{i_1},\ldots,h_{i_{m-1}})$: m-tuple of the numbers $h_{i_0},h_{i_1},\ldots,h_{i_{m-1}}$.
- $\sum_{k=0}^{m-1} h_{i_k} = n$.

Figure 12: Routing control for $(h_{i_0}, h_{i_1}, \dots, h_{i_{m-1}})$

An Example: $\binom{7}{3}$ NW

- $(n,m) = (7,3) \Rightarrow (N,h) = (7,5)$
- $\{a_0, a_1, a_2, a_3, a_4, a_5, a_6\}$: Seven 1/5 symbols

Figure 13: $(h_0, h_3, h_5) = (3, 3, 1)$ and $h_0 + h_3 + h_5 = 7$

Theorem(Routing Control on an $\binom{n}{m}$ NW)

For any $(h_{i_0}, h_{i_1}, \ldots, h_{i_{m-1}}) \in \mathbf{Z}^m$, the translating quantity is able to achieve the routing capacity of the $\binom{n}{m}$ combination network, where the following two conditions are satisfied:

•
$$1 \le h_{i_k} \le h$$
 for $k = 0, 1, \dots, m - 1$,

$$\bullet \sum_{k=0}^{m-1} h_{i_k} = n .$$

An Example: $\binom{7}{3}$ NW

- $(n,m) = (7,3) \Rightarrow (N,h) = (7,5)$
- $\{a_0, a_1, a_2, a_3, a_4, a_5, a_6\}$: Seven 1/5 symbols

Figure 14: (h_0, h_3, h_5) satisfies the two conditions of the theorem

An Application for $\binom{n}{m}$ NW with multiple source nodes

• An $\binom{n}{m}$ NW with k source nodes

Figure 15: $\binom{n}{m}$ NW with k source nodes

$$k \times \frac{n}{n-m+1} \le m$$
 \Rightarrow Routing Capacity of the $\binom{n}{m}$ NW with k source nodes $=\frac{kn}{n-m+1}$.

An Example: $\binom{7}{3}$ NW with two source nodes

- $\binom{7}{3}$ NW, i.e., $(n,m)=(7,3)\Rightarrow (N,h)=(7,5)$ for each source node.
- The routing capacity $= kn/(n-m+1) = 14/3 \le 3 = m$
- $\{a_0,a_1,a_2,a_3,a_4,a_5,a_6\}$: Seven 1/5 symbols from the souce node 1.
- $\{b_0, b_1, b_2, b_3, b_4, b_5, b_6\}$: Seven 1/5 symbols from the souce node 2.

Figure 16: $\binom{7}{3}$ NW with two source nodes

An Example: $\binom{7}{3}$ NW with two source nodes

- $(i_0, i_1, i_2) = (0, 3, 5)$: the No. of intermediate node connected the sink.
- \bullet $(h_0^{(1)},h_3^{(1)},h_5^{(1)})=(3,3,1)$: the number of 1/5 symbols from the source node 1.
- \bullet $(h_0^{(2)},h_3^{(2)},h_5^{(2)})=(2,2,3)$: the number of 1/5 symbols from the source node 2.
- $h_i^{(1)} + h_i^{(2)} \le 5$ holds for all i = 0, 3, 5.

Figure 17: $(3,3,1) + (2,2,3) = (5,5,4) \le (5,5,5)$

Conclusions

- We have shown the method of Routing Control on the $\binom{n}{m}$ Conbination Network as an theorem.
- We have shown the application of Routing Control for the $\binom{n}{m}$ Conbination Network with multi-source nodes.

Point of Proof of the Theorem (Routing Control Theorem)

- For example, we consider $\binom{7}{3}$ NW, i.e., $(n,m)=(7,3)\Rightarrow (N,h)=(7,5)$
- $\{a_0, a_1, a_2, a_3, a_4, a_5, a_6\}$: Seven 1/5 symbols, which are generated on the source node. from the source to the sink via each intermediate node.
- Cyclic shift transfer; $T_i = \{a_i, a_{i+1}, a_{i+2}, a_{i+3}, a_{i+4}\}$ from the source node to the intermediate node of No. i.

Figure 18: $\binom{7}{3}$ NW

Point of Proof of the Theorem(Routing Control Theorem)

- $(i_0, i_1, i_2) = (0, 3, 5)$: the No. of intermediate node connected the sink.
- $(h_0, h_3, h_5) = (1, 3, 3)$: the number of 1/5 symbols which are translated from the source to the sink via each intermediate node.

$\mathrm{No}.i$	$\mid a_0 \mid$	a_1	a_2	a_3	a_4	a_5	a_6	a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_0	$\parallel h_i$
	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	
$\rightarrow 0$	•	0	0	0	0											1
3				•	•	•	0	0								3
5						0	•	•	•	0						3
$\rightarrow 3$				•	•	•	0	0								3
5						0	•	•	•	0						3
0								0	0	•	0	0				1
$\rightarrow 5$						•	•	•	0	0						3
0								0	•	0	0	0				$\parallel 1$
3											•	•	•	0	0	3

For any (i_0, i_1, i_2) and $(h_{i_0}, h_{i_1}, h_{i_2})$, there exsits at least run of 7 black circles in the table.

Routing Capacity of an $\binom{n}{m}$ NW

Figure 19: Routing Capacity $\frac{n}{n-m+1}$ of $\binom{n}{m}$ NW

An Example (h=2)

- $\bullet~N$: the number of 1/h symbols which can be translated from the source node to all the same sink nodes by routing $\Rightarrow N=3$
- ullet N/h : the achievable routing quantity of symbol of the network $|\Rightarrow| N/h=3/2$

Figure 20: h=2, N=3 and N/h=3/2

An Example (h=3)

- $\bullet~N$: the number of 1/h symbols which can be translated from the source node to all the same sink nodes $\Rightarrow N=4$
- ullet N/h : the achievable routing quantity of symbol of the network $\Rightarrow N/h = 4/3$

Figure 21: h=3, N=4 and N/h=4/3

Figure 22: N=4 and h=3

Figure 23: $(h_1, h_2) = (1, 3), (2, 2), (3, 1)$ for the sink node of No. 2