(2008/12/03 「2008 年度 離散数学 講義資料 p.49 例題 5.55」の追記) **2008** 年度 離散数学 講義資料¹

例題 5.55 (X, \leq_X) , (Y, \leq_Y) を順序集合とする.そのとき, $X \times Y$ 上の関係 R を, (x_1, y_1) , $(x_2, y_2) \in X \times Y$ に対し,「" $(x_1, y_1)R(x_2, y_2)$ " \Leftrightarrow " $(x_1 \leq_X x_2) \wedge (y_1 \leq_Y y_2)$ "」が成り立つときと定義する.このとき,R は $X \times Y$ 上の順序関係になる.

(証明)

(反射律) 任意の $(x,y) \in X \times Y$ に対し、 $x \le x$ かつ $y \le y$ が成り立つ。 ゆえに、(x,y)R(x,y) が成り立つ。

(反対称律) 任意の $(x_1,y_1), (x_2,y_2) \in X \times Y$ に対し、 $(x_1,y_1)R(x_2,y_2)$ かつ $(x_2,y_2)R(x_1,y_1)$ ならば、 $(x_1,y_1)R(x_2,y_2)$ より、 $x_1 \le x_2$ かつ $y_1 \le y_2$. さらに、 $(x_2,y_2)R(x_1,y_1)$ より、 $x_2 \le x_1$ かつ $y_2 \le y_1$. したがって、 $x_1 \le x_2$ かつ $x_2 \le x_1$ より、 $x_1 = x_2$. 同様に、 $y_1 \le y_2$ かつ $y_2 \le y_1$ より、 $y_1 = y_2$. ゆえに、 $(x_1,y_1) = (x_2,y_2)$ が成り立つ。

(推移律) 任意の $(x_1,y_1), (x_2,y_2), (x_3,y_3) \in X \times Y$ に対し、 $(x_1,y_1)R(x_2,y_2)$ かつ $(x_2,y_2)R(x_3,y_3)$ ならば、 $(x_1,y_1)R(x_2,y_2)$ より、 $x_1 \leq x_2$ かつ $y_1 \leq y_2$. さらに、 $(x_2,y_2)R(x_3,y_3)$ より、 $x_2 \leq x_3$ かつ $y_2 \leq y_3$. したがって、 $x_1 \leq x_2 \leq x_3$ より、 $x_1 \leq x_3$. 同様に、 $y_1 \leq y_2 \leq y_3$ より、 $y_1 \leq y_3$. ゆえに、 $(x_1,y_1)R(x_3,y_3)$ が成り立つ。

以上より、R は 反射律、反対称律、推移律を満たし、 $X \times Y$ 上の順序関係となる。

¹法政大学 情報科学部, 2008 年度 秋 離散数学 (水曜日 1 時限目)

^{©2007-2008} 栗原正純, 電気通信大学情報通信工学科, kuri@ice.uec.ac.jp