離散数学演習 (集合と写像)1

2007年10月24日(水)

問題 1 空集合 ϕ の定義を述べよ。

問題 2 X,Y を集合とする。そして、X は Y の部分集合、すなわち、 $X\subseteq Y$ とする。この例を元に、部分集合の定義を述べよ。

問題 3 X,Y を集合とする。X と Y は等しい、すなわち、X=Y とする。この例を元に、集合が等しいことの定義を述べよ。

問題 4 次のことが正しいかどうかを判定し、その理由を述べよ。

- 1. $\phi \subset \phi$
- $2. \phi \in \phi$
- $\beta. \ \phi \subseteq \{\phi\}$
- 4. $\phi \in \{\phi\}$
- $5. \{\phi\} \subseteq \{\phi\}$
- 6. $\{\phi\} \in \{\phi\}$

ただし、次の i, ii を既知として利用しても構わない.

- i. 任意の集合 X に対し、 $X \subseteq X$ が成り立つ。
- ii. 任意の集合 X に対し、 $\phi \subseteq X$ が成り立つ。

問題 5 U を全体集合とし、X,Y を U の部分集合、すなわち、 $X\subseteq U,Y\subseteq U$ とする。このとき以下の問いに答えよ。

- 1. 和集合 $X \cup Y$ の定義を述べよ。
- 2. 積集合 (共通集合) $X \cap Y$ の定義を述べよ。
- 3.~U に関する X の補集合 X^c の定義を述べよ。
- 4. X と Y の差集合 X Y の定義を述べよ。

問題 6 $U=\{1,2,\ldots,9\},~X=\{2,3,7,8\},~Y=\{1,3,5,7,9\}$ とするとき、 $X\cup Y,~X\cap Y,~X^c,~Y^c,~X-Y,~Y-X$ をそれぞれ外延的記法で表せ。

問題 7X,Y,Z を集合とする。このとき、次の分配律が成り立つことを示せ:

 $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z).$

問題 8 問題 6 と同様に, $U=\{1,2,\ldots,9\}$, $X=\{2,3,7,8\}$, $Y=\{1,3,5,7,9\}$ とする。このとき、次の集合を外延的記法で表せ。ここで、問題 6 の結果を利用しても構わない。

- 1. $(X \cup Y)^c$
- 2. $X^c \cap Y^c$
- 3. $(X \cap Y)^c$
- 4. $X^c \cup Y^c$

問題 9 X,Y を集合とする。このとき、次のド・モルガンの法則が成り立つことを示せ: $(X \cup Y)^c = X^c \cap Y^c$.

問題 10 X,Y,Z を集合とする。このとき、次式が成り立つことを示せ:

 $(X - Y) - Z = X - (Y \cup Z).$

 $^{^1}$ 法政大学情報科学部コンピュータ科学科, ディジタルメディア学科, 2 2007 年度秋「離散数学」 栗原正純, 電気通信大学情報通信工学科, 2 kuri@ice.uec.ac.jp (2 2007/10/22/13:10)

問題 11 集合 X,Y を $X=\{2,3,1\}, Y=\{a,b\}$ とする。このとき、X と Y の直積集合 $X\times Y$ を外延的記法で表せ。さらに、 $X\times Y$ の要素数 $|X\times Y|$ を述べよ。

問題 12 X を集合とする。このとき、以下の問に答えよ。

- 1. X のベキ集合 2^X の定義を述べよ。
- 2. $X = \{a, b, c\}$ とするとき、 2^X を外延的記法で表せ。さらに、 2^X の要素数 $|2^X|$ を述べよ。
- $\it 3.$ 一般に、有限集合 $\it X$ に対し、 $\it X$ のベキ集合 $\it 2^X$ の要素数 $\it |2^X|$ はどのように書けるか。それを述べよ。

問題 13 以下の問いに答えよ。

- $1. 2^{\{\phi\}}$ を外延的記法で表せ。さらに、 $2^{\{\phi\}}$ の要素数 $|2^{\{\phi\}}|$ を述べよ。
- $2. \ 2^{2^{\{\phi\}}}$ を外延的記法で表せ。さらに、 $2^{2^{\{\phi\}}}$ の要素数 $|2^{2^{\{\phi\}}}|$ を述べよ。

問題 14 有限集合 X,Y,Z に対し、以下の等式が成り立つことを示せ。

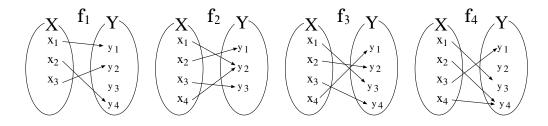
 $|X \cup Y \cup Z| = |X| + |Y| + |Z| - |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|$ ただし、次の i, ii を既知として利用しても構わない:

- i. $|X \cup Y| = |X| + |Y| |X \cap Y|$
- $ii. (X \cap Z) \cap (Y \cap Z) = X \cap Y \cap Z$

問題 15 X,Y を空でない集合とし、f を X から Y への写像 $f:X\longrightarrow Y$ とする。このとき、以下の問いに答えよ。

- 1. 写像 f が単射であることの定義を述べよ。
- 2. 写像 f が全射であることの定義を述べよ。
- 3. 写像 f が全単射であることの定義を述べよ。

問題 16 4 つの写像 $f_i: X \longrightarrow Y, i=1,2,3,4$ をそれぞれ以下の図のように定義する。このとき、以下の問いに答えよ。

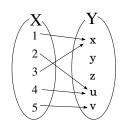


- 1. 4 つの写像 f_1, f_2, f_3, f_4 の中で単射であるものをすべて述べよ。
- 2.4 つの写像 f_1, f_2, f_3, f_4 の中で全射であるものをすべて述べよ。
- 3.4 つの写像 f_1, f_2, f_3, f_4 の中で全単射であるものをすべて述べよ。

問題 17 X,Y を空でない集合とし、f を X から Y への写像 $f:X\longrightarrow Y$ とする。このとき、象と原像は次のように定義される。

- $1. \ X$ の部分集合 A に対し、A の f による像 f(A) とは、
 - $f(A) := \{ f(x) \in Y \mid x \in A \}.$
- $2.\ Y$ の部分集合 B に対し、B の f による原像 (あるいは逆像 $)\ f^{-1}(B)$ とは、
 - $f^{-1}(B) := \{ x \in X \mid f(x) \in B \}.$

いま、集合 X,Y をそれぞれ $X=\{1,2,3,4,5\},Y=\{x,y,z,u,v\}$ とする。そして、写像 $f:X\longrightarrow Y$ を次の図のように定義する。このとき、以下の問いに答えよ。



- 1. $f({2,3,4})$ を外延的記法で表せ。
- 2. $f({1,2,5})$ を外延的記法で表せ。
- $3. f^{-1}({x,y,v})$ を外延的記法で表せ。
- $4. f^{-1}(\{z,u\})$ を外延的記法で表せ。

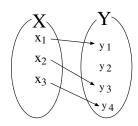
問題 18 X,Y を空でない集合とし、f を X から Y への写像 $f:X\longrightarrow Y$ とする。X の部分集合 A に対し、以下のことを示せ。

- 1. $f^{-1}(f(A)) \supseteq A$ が成り立つことを示せ。
- 2. 写像 f が単射ならば $f^{-1}(f(A)) \subseteq A$ が成り立つことを示せ。

問題 19 X,Y を空でない集合とし、f を X から Y への写像 $f:X\longrightarrow Y$ とする。Y の部分集合 B に対し、以下の問いに答えよ。

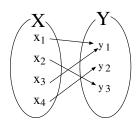
- 1. $f(f^{-1}(B)) \subseteq B$ が成り立つことを示せ。
- 2. 写像 f が全射ならば $f(f^{-1}(B)) \supseteq B$ が成り立つことを示せ。

問題 ${f 20}$ 集合 X,Y を $X=\{x_1,x_2,x_3\},Y=\{y_1,y_2,y_3,y_4\}$ とし、写像 $f:X\longrightarrow Y$ を次の図のように定義する。このとき、集合 A,B をそれぞれ $A=\{x_1,x_2\}(\subseteq X),B=\{y_1,y_2\}(\subseteq Y)$ とする。以下の問いに答えよ。



- 1. f(A) を外延的記法で表せ。
- $2. f^{-1}(f(A))$ を外延的記法で表せ。
- $3. f^{-1}(B)$ を外延的記法で表せ。
- $4. f(f^{-1}(B))$ を外延的記法で表せ。

問題 21 集合 X,Y を $X=\{x_1,x_2,x_3,x_4\},Y=\{y_1,y_2,y_3\}$ とし、写像 $f:X\longrightarrow Y$ を次の図のように定義する。このとき、集合 A,B をそれぞれ $A=\{x_1,x_2\}(\subseteq X),B=\{y_1,y_2\}(\subseteq Y)$ とする。以下の問いに答えよ。



- 1. f(A) を外延的記法で表せ。
- 2. $f^{-1}(f(A))$ を外延的記法で表せ。
- $3. f^{-1}(B)$ を外延的記法で表せ。
- 4. $f(f^{-1}(B))$ を外延的記法で表せ。

問題 ${\bf 22}~X,~Y,~Z$ を空でない集合とする。f,~g をそれぞれ写像 $f:X\longrightarrow Y,~g:Y\longrightarrow Z$ とする。そして,写像 $X\stackrel{f}{\longrightarrow}Y\stackrel{g}{\longrightarrow}Z$ に対し,それらの合成写像 $X\stackrel{g\circ f}{\longrightarrow}Z$ は, $x\in X$ に対し、 $(g\circ f)(x):=g(f(x))$ と定義される.このとき,以下の問いに答えよ.

- 1. 合成写像 $g \circ f$ が単射ならば f は単射であることを示せ.
- 2. 合成写像 $g \circ f$ が全射ならば g は全射であることを示せ.