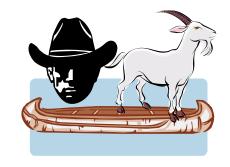
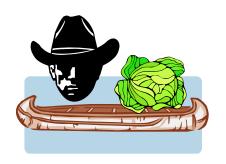

クイズ「狼と山羊とキャベツ」

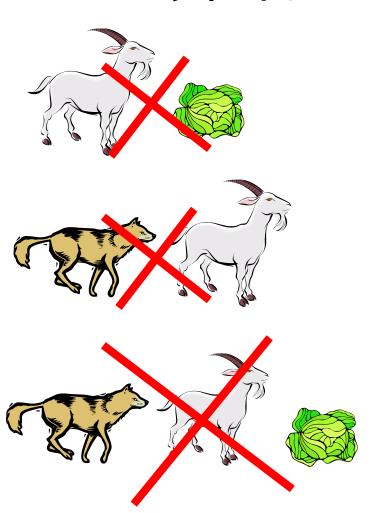
栗原正純 UEC Tokyo 電気通信大学 情報通信工学科 (2007. 6. 4) (2008/11/28修正)

男、狼、山羊、キャベツ、船、川


船に乗る組合せ



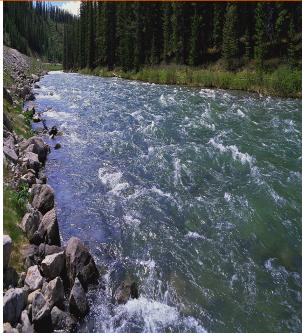


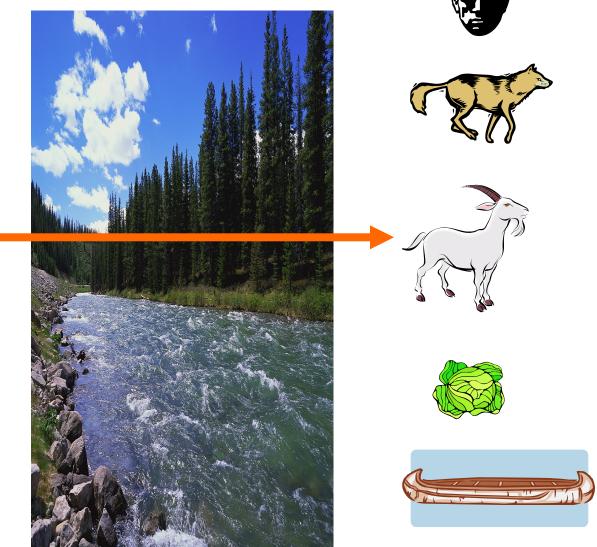


男がそばにいないと食べ(食べられ) てしまう組合せと安全な組合せ

男がいなくても安全 な組合せ

左岸から右岸に渡りたい





UEC Tokyo

つまり、この状態にしたい

UEC Tokyo

2009/4/18

6

問題 1/2

- 川の左岸から右岸へ、男が、自分自身以外に1つの荷物しか乗せられない船で、狼、山羊、キャベツを安全に運ぶには、どうしたらよいかを考えよう。
- ただし、男が一緒にいないと、狼は山羊を食べてしまうし、山羊はキャベツを食べてしまう。
- また、船が移動するときは、必ず、男が乗って 運転する必要がある。

問題 2/2

- 問1. どのような順番で運べばよいか、具体的な手順(方法)を示せ。
- 問2. 少なくとも船を何回利用する必要があるかを示せ。すなわち、利用する最小回数を示せ。
- 問3. 最小回数で実行できる手順は何通りあるかを示せ。また、その手順のすべてを示せ。

それぞれを簡略しアルファベットで表す

M Man 男

W Wolf 狼

G Goat 山羊

C Cabbage キャベツ

組合せ(状態)の列挙

左岸

右岸

状	態	W	\overline{G}	C	M	W	\overline{G}	\overline{C}	M
	0	1	1	1	1				
	1	1	1	1					1
	2	1	1					1	1
	3	1	1		1			1	

"1"いる "0"いない。"0"を省略。 各行には4個の1がたつ。

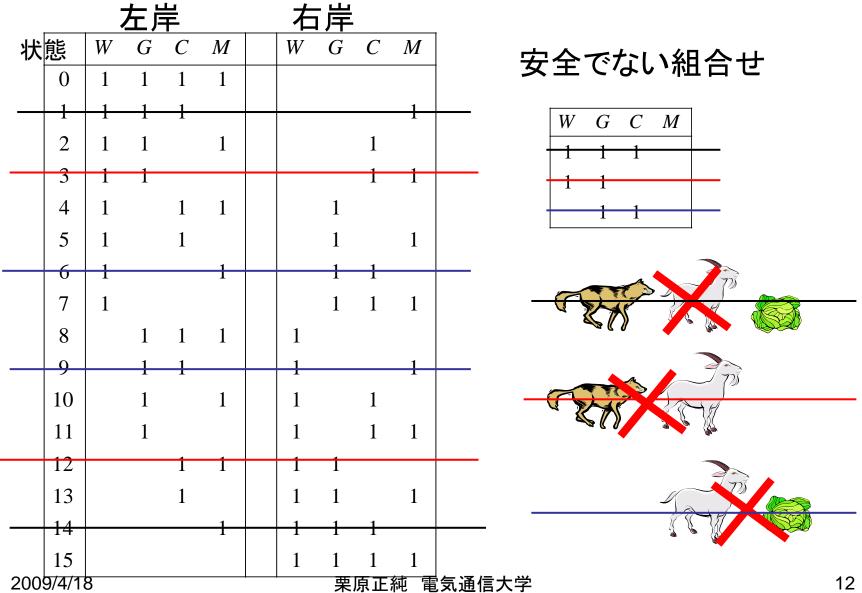
たとえば、

O: すべてが、左岸にいる状態。

状態 1: 男のみが、右岸にいる状態。

2: 男とキャベツのみが、右岸にいる状態。

3: キャベツのみが右岸にある状態。

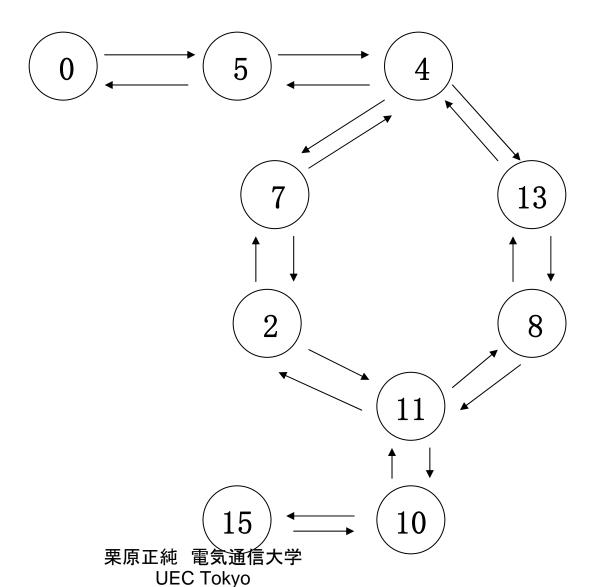

組合せ(状態)の列挙

	_		左	岸	右	ī岸	•		
状	態	W	G	C	M	W	G	C	M
	0	1	1	1	1				
	1	1	1	1					1
	2	1	1		1			1	
	3	1	1					1	1
	4	1		1	1		1		
	5	1		1			1		1
	6	1			1		1	1	
	7	1					1	1	1
	8		1	1	1	1			
	9		1	1		1			1
	10		1		1	1		1	
	11		1			1		1	1
	12			1	1	1	1		
	13			1		1	1		1
	14				1	1	1	1	
	15					1	1	1	1

2009/4/18

東原正純「電気通信大学 UEC Tokyo

安全性が確保される状態


UEC Tokyo

可能な状態遷移の表

状態	W	G	C	M	W	G	C	M	状態遷移		
0	1	1	1	1					0	\rightarrow	5
1	1	1	1					1	1	\longrightarrow	
2	1	1	-	1			1	_	2	\rightarrow	7 ,11
3	1	1					1	1	3	\rightarrow	
4	1		1	1		1			4	\rightarrow	5 , 7 , 13
5	1		1			1		1	5	\rightarrow	0,4
6	1			1		1	1		6	\rightarrow	
7	1					1	1	1	7	\rightarrow	2,4
8		1	1	1	1				8	\rightarrow	11 ,13
 9		1	1		1			1	9	\rightarrow	
10		1		1	1		1		10	\rightarrow	11 ,15
11		1			1		1	1	11	\rightarrow	2,8,10
12			_1_	1	1	_1_			12	\rightarrow	
13			1	-	1	1		1	13	\rightarrow	4,8
14				1	1	1	1		14	\rightarrow	
15					1	1	1	1	15	\rightarrow	10

グラフ表現(状態遷移図)

	.1 b 4E	\T. 1b
	状態	逵移
0	\rightarrow	5
2	\rightarrow	7,11
	,	, ,11
		5 7 12
4	\rightarrow	5,7,13
5	\rightarrow	0,4
7	\rightarrow	2,4
8	\rightarrow	11,13
	·	, -
10	\rightarrow	11,15
11	\rightarrow	2,8,10
11		2,0,10
		4.0
13	\rightarrow	4,8
15	\rightarrow	10

行列表現

状態遷移									
0	\rightarrow	5							
2	\rightarrow	7,11							
4	\rightarrow	5,7,13							
5	\rightarrow	0,4							
7 8	$\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$	2,4 11,13							
10	\rightarrow	11,15							
11	\rightarrow	2,8,10							
13	\rightarrow	4,8							
15	\rightarrow	10							

		0	2	4	5	7	8	10	11	13	15
	0	0	0	0	1	0	0	0	0	0	$\begin{bmatrix} 0 \end{bmatrix}$
	2	0	0	0	0	1	0	0	1	0	0
	4	0	0	0	1	1	0	0	0	1	0
	5	1	0	1	0	0	0	0	0	0	0
	7	0	1	1	0	0	0	0	0	0	0
_	8	0	0	0	0	0	0	0	1	1	0
	10	0	0	0	0	0	0	0	1	0	1
	11	0	1	0	0	0	1	1	0	0	0
	13	0	0	1	0	0	1	0	0	0	0
	15	0	0	0	0	0	0	1	0	0	0

行列 R^k の一行目

$$R^{1} = \begin{bmatrix} 0 & 2 & 4 & 5 & 7 & 8 & 10 & 11 & 13 & 15 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R^{2} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$R^{3} = \begin{bmatrix} 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 2 & 1 & 4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R^{4} = \begin{bmatrix} 2 & 1 & 4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 6 & 5 & 0 & 0 & 2 & 5 & 0 \end{bmatrix}$$

$$R^{6} = \begin{bmatrix} 6 & 7 & 16 & 1 & 3 & 7 & 2 & 0 & 1 & 0 \end{bmatrix}$$

$$R^{7} = \begin{bmatrix} 1 & 3 & 12 & 24 & 23 & 1 & 0 & 16 & 23 & 2 \end{bmatrix}$$

行列 R のベキ乗計算の結果より

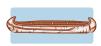
- •状態Oから状態15へのパスの本数を表す成分に、行列 R の7乗 R^7 のときに初めて非ゼロ成分の2が出現した。
- したがって、状態0から状態15への最短のパスの長さは7であり、その本数は2本であることが分かる。

結論

- 問1の解答は、状態遷移図を表すグラフ表現の結果 から得られる。
- また、問題2,3の解答も、グラフ表現の結果から最小回数は7回であり、その手順は2通りある。手順は、問題1の解答と同様に、グラフ表現の状態遷移図から得られる。
- 行列表現およびそのベキ乗の結果からは、最小回数 および最小回数を実現する手順が何通りあるかを 計算で得られるという特徴があることが分かる。
- 具体的な手順を説明するには、グラフ表現を利用した 方が分かりやすい。

1(状態)

手順(その1)


1(0)

2(5)

3(4)

4(7)

5(2)

6(11)

7(10)

8(15)

